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1.0 INTRODUCTION

This report describes the verification of a set of memory management units (MMU). The
specification and verification were done using the HOL verification system (ref. 1). The MMUs
can be organized into a complexity hierarchy. Each new level in the hierarchy adds a few significant
features or modifications to the Jower level MMU. The units described include:

a. A page check TLM (translation look-aside module).
b. A page check TLM with supervisor line.

¢. A base and bounds MMU.

d. A virtual address translation MMU.

e. A virtual address translation MMU with memory resident segment table.

Life-critical systems are becoming increasingly dependent on computer systems. Though re-
dundant components in fault-tolerant systems increase reliability, these systems do not exclude
errors due to specification or implementation flaws. Building reliable systems out of unreliable
components does not guarantee a safe and secure system. Faults resulting from design errors are
especially difficult to protect against and can compromise critical functionality (ref.2). While sim-
ulation may discover the presence of errors, it cannot guarantee the absence of errors. Hardware
verification can be used to uncover all inconsistencies between a mathematical model of the imple-
mentation and the formal specification. Hunt suggests that it is faster to verify a microprocessor

design than to exhaustively test one (ref. 3).

Hardware verification requires that a system design is formally shown to satisfy its specification
through a mathematical proof. Using theorem proving techniques, an expression describing the
behavior of a device is proven to be equivalent in some sense to an expression describing the
implementation structure of the device. These expressions concisely describe the behavior of devices
in an unambiguous way. The behavioral semantics are clearly defined; providing an accurate basis

for building systems (ref. 4).

1.1 MEMORY MANAGEMENT

The principle purpose of an operating system is to manage system resources. Perhaps the most

fundamental resource is main memory. On behalf of a program, the operating system allocates
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a section of main memory to load the program into before execution. During execution, the
operating system will handle dynamic requests for additional memory. Sophisticated operating
systems also support additional memory management capabilities including security and virtual
memory functions.

As a minimal security function, the operating system must ensure process noninterference.
Each process expects that its space will not be modified or read by other processes. Further,
different portions of a process can be tagged as readable, writable, executable, or a combination of
the three.

Most machines have a physical memory address space that is much smaller than the address
space the processor can address. For example, a 32-bit processor may be capable of addressing 4
gigabytes of memory (2°2) while the machine only has 16 megabytes of actual main memory (2%4).
When several programs are executing, each may expect access to the entire address space. Virtual
memory allows the entire address space to appear available to each process.

Left to software alone, security and virtual memory capabilities cannot be completely provided.
The functions demand hardware support. These functions may be present as part of the central

processing unit (CPU) or as a separate chip. The MMU acts as a filter between the CPU and
memory (see Figure 1.1-1).

For each CPU memory request, the MMU determines whether the request will violate security
constraints. If virtual memory support is also provided, the MMU will translate a request from

a virtual to a real location. When the virtual location does not map to a location presently in
memory, the MMU will inform the CPU that a “fault” has occurred.

Security and virtual memory attributes are defined for blocks of contiguous memory. Access to
each block can be restricted to be a combination of read, write, or execute permissions. In systems
where all blocks are a fixed size, the blocks are referred to as “pages”. When the blocks may be of
varying size they are referred to as “segments”. In many systems both types of objects are present.
Segments consist of a varying number of pages. Protection attributes are established on a segment

basis and the real address of a memory word is specified on a page basis.

Simple MMUs expect the information for each block to be written to MMU registers (for
example, PDP-11). More sophisticated MMUs will access memory resident tables to ascertain a
block’s status (for example, Intel 80286, 80386 and Motorola 68851). Also a fully functional MMU
would utilize a cache to speed up these table accesses. Process management functions are also

frequently present. The operating system is responsible for setting up the tables and can construct
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a distinct table for each process.

1.2 INTEGRATION

The MMU must be designed to work with other processors in a cooperative manner. The MMU
must be respondent to the actions of other processors. The CPU and MMU have a codependent
relationship. The MMU must know the process id (supervisor or user process), the kind of request

(instruction fetch or data fetch), as well as whether the request is a read, write, or execute.

MMU exceptions (bad address, segment fault, page fault, invalid access type) are distinct from
interrupts. The CPU must be prepared to handle an MMU exception during the execution of an
instruction (as opposed to the standard interrupt mechanism where interrupts are handled only

after the end of an executing instruction).

i the CPU performs prefetch, it is possible that the prefetch mechanism will inadvertently
fetch an address that would never be executed (due to some sort of jump preceding the execution
of this “instruction”). If the MMU generates one of the possible exceptions mentioned above, the

CPU must postpone processing the exception until the offending value is actually used.



The MMU maust also provide a means for the CPU to perform any operation regardless of
possible exceptions. For example, when an external interrupt occurs, the CPU must be able to
save the return address on a stack.

MMU’s can also extend a CPU’s instruction set. Instructions to flush its cache, search or
load a translation table entry, or test the access rights of a process may be provided. To support
operating system memory management, the MMU may also be responsible for setting a dirty bit
within a page descriptor when the page has been modified.

The MMU must be responsive to other devices as well. For example, the activity of a direct
memory access unit (DMA) can invalidate MMU cache entries. Either the MMU must watch the
bus traffic or a mechanism must be available to the CPU to invalidate cached entries.

1.3 VERIFIED MEMORY MANAGEMENT UNITS

Each of the MMUs are constructed from a combination of gates, registers and word comparison
units. The gates and registers were available from previous work; however, the word comparison

units were designed and verified for this effort.

The simplest MMU combines a register with a word comparison unit. Addresses from a system
bus can be stored in the register or compared with the register’s value. An acknowledgment signal
is returned to indicate whether or not the address matched the register value. Because the word
comparison unit provides result output lines to indicate if the first of two inputs is greater than,

less than, or equal to the other, the MMU could be trivially changed to return a different result.

While this MMU is primitive, it provides sufficient hardware support for a segmented or paged

memory by combining several units and providing each with a distinct part of the address.

For minimal security, the next MMU uses input from a supervisor line. When the supervisor
line is high, the MMU operates in supervisor mode. A new register value can only be stored when

the MMU is in supervisor mode. Also, all accesses are authorized when in supervisor mode.

The base and bounds MMU adds two significant enhancements. First, the register is addressed
as a memory location. When the supervisor line is high, the address bus value matches the register’s
predefined address, and the write line is high; the MMU will store the value on the data bus in its
register. Also, the MMU logically divides each address into two parts: a page and an offset. The
register value is divided in the same manner. For the MMU to validate a memory address, the page

address must match with the stored page component and the offset must be less than or equal to



the stored bounds component.

The next MMU adds user mode virtual address translation. System information pertaining
to both segment and offset validation and virtual address translation is maintained in a pair of

registers. These registers can only be accessed when the MMU is operating in supervisor mode.

The last MMU validates CPU memory requests based on a memory resident segment table.
Each segment-specific entry in the table defines the segment’s availability, read-write-execute access

rights, segment size, and real address location in memory.

The addition of these features reduces the amount of operating system software support. By

developing a sophisticated MMU in steps, the construction of the final proof is much more tractable.

In the sections that follow, we briefly describe the HOL theorem prover. Then, we describe
the above devices and several auxiliary theories developed to support their verification. The final

section is a description of future work, including composing the MMU with a cache.

1.4 RELATED WORK

Neumann proposes a unified hierarchy that accomodates all critical requirements (ref. 5). Respon-
sibility to satisfy each requirement can then be delegated to an appropriate layer of the design.
The layers remain interdependent; the more abstract layers relying on the correctness of the lower
Jevels. Formal proofs about the hardware level discharge some of the assumptions made by higher,
software levels. Similarly, hardware level proofs often make assumptions about the behavior of the

software that are discharged when the level is composed (ref. 6).

There has been significant interest in formal verification as an alternative to simulation (refs. 7,
8, 9 and 10). Hardware verification efforts thus far have focused primarily on a microprocessor as

the base for computer systems (refs. 3, 11, 12 and 13).

Perhaps the best known verification effort is that of the VIPER microprocessor (refs. 11, 14
and 15). VIPER is the first microprocessor intended for commercial distribution where a formal
verification has been attempted. However, these processors are quite limited. Only Joyce’s mi-
croprocessor, Tamarack-3, provides interrupts, and none provide memory management functions

necessary to support a secure operating system.

Previous efforts to verify systems have included construction of vertically verified systems with
a microprocessor/memory as the system’s base. Joyce has specified and verified a compiler for the

verified Tamarack-3 microprocessor (ref. 16).



Computational Logic Inc. has attempted to verify a “stack” of interpreters where the imple-
mentation of a level is the specification of the next lower level (ref. 4). In this way, higher levels
of the stack define new functionality by collecting the next lower level’s functionality. The stack
consists of a compiler (Micro-Gypsy), an assembler and linking loader, an operating system, and a

IiCroprocessor.

Bevier has verified a simple operating system (KIT), which ensures that tasks are isolated
from one another. Implementation of the hardware base has not been verified (refs. 17 and 18).
He assumes extensions to the FM8502 microprocessor to provide interrupts, asynchronous 1/0,

memory management, and supervisor-mode instructions.

1.5 HOL

HOL is a general theorem proving system developed at the University of Cambridge (refs. 1 and
19) that is based on Church’s theory of simple types, or higher order logic (ref. 20). Church
developed higher order logic as a foundation for mathematics, but it can be used for describing
and reasoning about computational systems of all kinds. Higher order logic is similar to the more
familiar predicate logic, but allows quantification over predicates and functions, not just variables,

allowing more general systems to be described.

HOL grew out of Robin Milner’s LCF theorem prover (ref. 21) and is similar to other LCF
progeny such as NUPRL (ref. 22). Because HOL is the theorem proving environment used in the
body of this work, we will describe it in more detail.

HOL’s proof style can be tailored to the individual user, but most users find it convenient to
work in a goal-directed fashion. HOL is a tactic based theorem prover. A tactic breaks a goal into
one or more subgoals and provides a justification for the goal reduction in the form of an inference
rule. Tactics perform tasks such as induction, rewriting, and case analysis. At the same time,
HOL allows forward inference and many proofs are a combination of both forward and backward
proof styles. Any theorem proving strategy a user employs in connection with HOL is checked for

soundness, eliminating the possibility of incorrect proofs.

HOL provides a metalanguage, ML, for programming and extending the theorem prover. Using
ML, tactics can be put together to form more powerful tactics, new tactics can be written, and
theorems can be combined into new theories for later use. The metalanguage makes the HOL

verification system extremely flexible.



In HOL, all proofs, even tactic-based proofs, are eventually reduced to the application of
inference rules. Most nontrivial proofs require large numbers of inferences. Proofs of large devices
such as microprocessors can take many millions of inference steps. In a proof containing millions
of steps, what kind of confidence do we have that the proof is correct? One of the most important
features of HOL is that it is secure, meaning that new theorems can only be created in a controlled
manner. HOL is based on five primitive axioms and eight primitive inference rules. All high-level
inference rules and tactics do their work through some combination of the primitive inference rules.
Because the entire proof can be reduced to one using only eight primitive inference rules and five

primitive axioms, an independent proof-checking program could check the proof syntactically.

1.5.1 THE LANGUAGE.

The object language of HOL is described in this section. We will discuss HOL’s terms and types.

Terms. All HOL expressions are made up of terms. There are four kinds of terms in HOL:
variables, constants, function applications, and abstractions (lambda expressions). Variables and
constants are denoted by any sequence of letters, digits, underlines, and primes starting with a
Jetter. Constants are distinguished in the logic; any identifier that is not a distinguished constant
is taken to be a variable. Constants and variables can have any finite arity, not just 0, and, thus,

can represent functions as well.

Function application is denoted by juxtaposition, resulting in a prefix syntax. Thus, a term of
the form “"t1 t2" is an application of the operator t1 to the operand t2. The term’s value is the

result of applying ti to t2.

An abstraction denotes a function and has the form "A x. t". An abstraction "A x. t" has
two parts: the bound variable x and the body of the abstraction t. It represents a function, £,

guch that "£(x) = t". For example, "A y. 2+¢y" denotes a function on numbers which doubles its
argument.

Constants can belong to two special syntactic classes. Constants of arity 2 can be declared
to be infix. Infix operators are written "randi op rand2" instead of in the usual prefix form:
“op randi rand2". Table 1.5-1 shows several of HOL’s built-in infix operators.

Constants can also belong to another special class called binders. A familiar example of a
binder is V. If ¢ is a binder, then the term "c x.t" (where x is a variable) is written as shorthand

for the term "c() x. t)". Table 1.5-2 shows several of HOL’s built-in binders.



Table 1.5-1: HOL Infiz Operators
Operator | Application | Meaning
=tl=t2 t1 equals t2

. | £1,12 the pair t1 and t2
At A2 t1 and t2
vitiv 2 tiort2

= | t1 = t2 | ti implies t2

Table 1.5-2: HOL Binders
Binder | Application | Meaning
Vivx.t forallx, t
J|3x. ¢t there exists an x such that t
elex. t choose an x such that t is true

In addition to the infix constants and binders, HOL has a conditional statement that is written

a — b | ¢, meaning “if a, then b, else c.”

Types. HOL is strongly typed to avoid Russell’s paradox and others like it. Russell’s paradox
occurs in a high order logic when one can define a predicate that leads to a contradiction. Specif-
ically, suppose that we define P as P(x) = -x(x) where - denotes negation. P is true when its
argument applied to itself is false. Applying P to itself leads to a contradiction since P(P) = -P(P)
(i.e. , true = false). This kind of paradox can be prevented by typing since, in a typed system,
the type of P would never allow it to be applied to itself.

Every term in HOL is typed according to the following recursive rules:

a. Each constant or variable has a fixed type.
b. f x has type a and t has type §, the abstraction A x. t has the type (a — 8).

¢c. If t has the type (a — §) and u has the type a, the application t u has the type 3.

Types in HOL are built from type variables and type operators. Type variables are denoted by
a sequence of asterisks (#) followed by a (possibly empty) sequence of letters and digits. Thus, *,
s++ and #ab2 are all valid type variables. All type variables are universally quantified implicitly,
yielding type polymorphic expressions.

Type operators construct new types from existing types. Each type operator has a name



Table 1.5-3: HOL Type Operalors

Operator Arity | Meaning
bool | 0 booleans
ind {| 0 individuals
num | 0 natural numbers
(#)1ist |1 lists of type *
(*,ss)prod | 2 products of * and ==
(#,**)sum | 2 coproducts of # and »=
(*,**)fun | 2 functions from * to »#

(denoted by a sequence of letters and digits beginning with a letter) and an arity. If 01,...,00 are
types and op is a type operator of arity n, then (oy,...,00)0p is 2 type. Note that type operators
are postfix while normal function application is prefix or infix. A type operator of arity 0 is a type

constant.

HOL has several built-in types, which are listed in Table 1.5-3. The type operators bool,
ind, and fun are primitive. HOL has a special syntax that allows (#,*#)prod to be written

as (» # s2), (#,%#)sum to be written as (* + ##), and (*,**)fun to be written as (% -> *#).

1.5.2 THE PROOF SYSTEM.

HOL is not an automated theorem prover but is more than simply a proof checker, falling somewhere
between these two extremes. HOL has several features that contribute to its use as a verification

environment:

a. Several built-in theories, including booleans, individuals, numbers, products, sums, lists, and
trees. These theories contain the five axioms that form the basis of higher order logic as well

as a large number of theorems that follow from them.

b. Rules of inference for higher order logic. These rules contain not only the eight basic rules
of inference from higher order logic, but also a large body of derived inference rules that
allow proofs to proceed using larger steps. The HOL system has rules that implement the
standard introduction and elimination rules for Predicate Calculus as well as specialized rules

for rewriting terms.



¢. A collection of tactics. Examples of tactics include: REWVRITE.TAC which rewrites a goal ac-
cording to some previously proven theorem or definition; GEB.TAC which removes unnecessary
universally quantified variables from the front of terms; and EQ.TAC which says that to show
two things are equivalent, we should show that they imply each other.

d. A proof management system that keeps track of the state of an interactive proof session.

e. A metalanguage, ML, for programming and extending the theorem prover. Using the metalan-
guage, tactics can be put together to form more powerful tactics, new tactics can be written,
and theorems can be aggregated to form new theories for later use. The metalanguage makes

the verification system extremely flexible.

1.6 DEVICE SPECIFICATION

Circuits and devices are described in HOL using a mixture of functions and predicates. Universally
quantified variables are used to specify input and output device lines while internal device lines
are existentially quantified. The specifications are generally defined to model] a state transition
system. A specification defines the state and environment at time t+1, as a function of the state

and environment at time &

1.7 ADDITIONAL NOTATION

In the text, various fonts will be used to denote constants, definition names and object types. The
turnstile symbol I, is used to indicate that the term is a theorem which has been formally proven
in the logic. When the subscript “def” is present (eg F4¢s), the theorem is simply a definition.
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2.0 AUXILIARY THEORIES

An MMU will receive as input both boolean control signals and word values. The word values
are abstractly viewed as addresses into memory, but take the concrete form of an array of boolean
values or bits. This sequence of bits will be referred to as a “bitVector”. To support the verification
of the MMUs, a theory defining how bitVectors can be ordered was constructed.

A theory describing a device that compares bitVectors was also constructed. The device accepts
two bit Vectors and returns a result indicating whether the first bitVector is greater than, less than

or equal to the second bitVector.

2.1 BITVECTORS

BitVectors are represented by the type :num—bool, but are constrained to be a finite length.
BitVectors are functions that, when applied to a number, return the bit at that offset. Given a
bitVector B with length n+1, the term B 0 returns the least significant bit value and the term B

n returns the most significant bit value.

The bitVector theory contains function definitions to compare bitVectors and to compare
subsequences of bitVectors. The definitions are recursive so that they may apply to bitVectors of
any length. Many of the functions expect the first argument to be the offset of the most significant
bit (msb) of a bitVector.

The auxiliary definitions ARB, ZEROS and ABS are defined in the box below. ARB uses the Hilbert
choice operator to return an arbitrary bit (boolean) value. ZEROS serves as a bit Vector of F values.
The curried function expects width and bit offset number arguments and returns F for any line

within the width range and an arbitrary value of type bool otherwise.

Signals are defined similarly to bitVectors. The concrete type is defined as :time—s bit Vector (or
:num—num— bool). However, it is convenient for signals to appear to be of type :num—time— bool.
The function ABS reorders arguments so that abstract signals are implemented by a function in-

volving bitVectors.

tdes ARB = ARB = ¢ (x:bool) . F
l"‘,jlﬂlOESIl‘(l('I)—bflm

Fgey ABS (v:num) (sig:nua—num—bool) (t:num) (n:nua)
wne<sy— signt | ARB
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Definitions bvEQUAL, bvGREATER and bvLESS correspond to the numeric comparison functions:
equal, greater than and less than. These definitions reflect a twos-complement interpretation of
bitVectors where the least significant bit is bit 0. T is used for the bit value 1 and F for the
bit value 0. The first argument specifies the most significant bit offset and is followed by two
bitVectors. The definitions, being recursive, specify a base case (where the msb offset is zero), and
the inductive case. Note that bvLESS is defined as a function of bvGREATER with the bitVector
arguments reversed.

Faes (bYEQUALO a b = (a0=Db0)) A
(bvEQUAL (SUC n) a b = (bvEQUALn a b A (a (SUC n) = (b (SUC n))) b))

l'-‘., (bvGREATERO a b= (a 0 A -“b%0)) A
(bvGREATER (SUC n) a b =
( (a(SUC B) A -~ b(SUCn)) V
((a(SUC n)=b(SUC n)) A DVGREATER n a b)
))

bder BYLESSn 2 b = bYGREATERn Db a

Comparison definitions, which only consider a contiguous section of a bitVector are also defined.
bvPART constructs a bit Vector given a range and a bitVector. Outside the range, the new bitVector
returns F, while within the range, the new bitVector returns the old bitVector’s corresponding
value. Definitions bvEQbit is a shorthand to compare two bits. bvPartEQUAL, and bvPartGREATER,
bvPartLESS compare contiguous sections of bitVectors; from a specified top bit down to a specified

bottom bit.

F4es bYPART max min (sig:num—bool) (n:num)
= (n>sax) — F | (n<min) = F | sign

Fyey bYEQit x a b = (a x = (b (x:num)):bool)

Faey (bYPartEQUALO ya b =
((y=0) — (bvEQpitOad) | F)) A
(bvPartEQUAL (SUC x) ya b=
((SUC x) > y — (bvEQbit (SUC x) a b A (bvPartEQUAL x y a b)) |
((SUC x) = y) — (bvEQbit (SUC x) a ) | F
)

Faey (bvPartGREATER (SUC 3) ya b =
C ((SUCx)>y) —
((a(Sucx) A - Db(SUCX)) V
((a(SUC x)=b(SUC x)) A bYPartGREATER x y a b) ) |
((SUC x) = y) — (a(SUCx) A = bB(SUC X)) | F ) )

bdes bYPartlESSxya b = byPartGREATER x y b a

12



2.2 GATES

The devices are constructed from the gates described below. The gates inv, nor2 and nand2 are

assumed to be primitive, and from these we construct and2.imp and or2_imp.

F4es imv in out = (out = = in)

Fder BOr2 a b out = (out = =~ (a V b))
P‘.!nm;bout-(out--'(a A b))

Fiey a0d2_imp a bout = (3 p. nand2abdbp A inv p out)

F4ey or2_imp a b out = (3p.mor2 adbp A invp out)

2.3 BITVECTOR COMPARISON UNITS

Two bitVector comparison units are constructed. The first compare unit produces three boolean
results indicating either a greater than, less than or equal relation between the two input bitVectors.
Frequently all that is needed is a device that recognizes two bitVectors as equal. The second unit

compares two bitVectors for equality as defined by the bitVector definition bvEQUAL.

2.3.1 COMPLETE BITVECTOR COMPARISON UNIT

The bitVector comparison unit takes two words as input and produces three boolean results indicat-
ing whether the first was greater than, less than, or equal to the second bitVector. The specification
and implementation definitions are constructed recursively. We begin by defining a specification
bitComp_spec, and implementation bitComp_imp, for a device where the inputs (first,sec) are
each a single bit rather than a bitVector. The implementation is proved to be equivalent to the

specification. Note the existentially quantified variables p and q are lines internal to the device.

Fdey bitComp_spec first sec gl e =
(g = ( first A - sec)) A
Q= (- first A sec)) A
(e = ( first = sec ))

F4ey bitComp_imp first sec gl e =
3pq . (inv tirst p) A (inv sec q) A
(nor2 p sec g) A
(nor2 q first 1) A
(nor2 gl e)

k bitComp_imp first sec g 1 e = bitComp_spec first sec gl o
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Definitions for two-bit words can be constructed in a similar manner as shown below. The

implementation compComb_imp is proved to be equivalent to the specification compComb.spec.

F4ey compComb_spec g0 g1 10 11 e0 el gl e =
(g= (g1 v (e1 A g0))) A
(1=(Q1 v (e1 A 10))) A
(e = (o1 A 00))

4oy compConb_imp g0 g1 10 11 60 01 gl e =
3pqg. (ana2 imp el g0 p) A (or2_impgipg) A
(and2_imp ¢1 10 q) A (or2_impliql) A
(and2_imp e¢1 ¢0 o)

F compComb_imp g0 g1 10 11 «0 e¢1 g 1 o = compComb_spec g0 g1 1011 ¢0 el gl e

Using the bitVector comparison definitions and the bitComp specification and implementation,

a compare unit for an arbitrary sized bitVector is defined using recursive definitions and verified.

bgef comp_specna b gl e=
(g=(bLvGREATERn a b) ) A
(1= (bvlESSnabdb)) A
( e= ( bvEQUAL n a b) )

b gey (comp_imp 0 a b gr 1s eq = (bitComp_imp (a 0) (b 0) gr 1s eq)) A
(comp_imp (SUC n) ab gr ls eq =
igalnengn lnen .
(comp_impn a b gn ln en) A
(bitComp_imp (a (SUC n)) (b (SUC n)) gn 1m ea) A
(compComb_imp gn gn 1n 1u en em gr 1s eq) )

F comp_imp n a b great less equ = comp_spec n a b great less equ

An example of an implementation for bitVectors of length three is in Figure 2.3-1.

2.3.2 COMPARISON OF BITVECTOR EQUALITY

Frequently, the full power of the compare unit described above is not required. For example, for a
device to recognize bus requests directed to it, the device need only compare for equality the bus
address with a predefined address. Note that an equality comparison unit also requires many fewer

gates.

The equality comparison unit is defined in a manner similar to the full comparison unit. First,
we construct a device that recognizes bit equality, and then we construct an equality unit for

arbitrary sized bitVector inputs. Figure 2.3-2 shows an equality comparison unit for bitVectors of
length three.

14
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Fdey bitEq_spec 1irst sec o =
(e = ( first = sec ))

b gy DitEq_imp first sec ¢ =
3ij. (nor2 first sec i) A
(and2_imp first sec j) A
(oxr2_imp i j @)

F bit_imp first sec ¢ = bitEq_spec first sec ¢

Fdey compEq_specn abe = (o= ( bVEQUAL n a ®) )

Fdey (compEq_imp 0 & b eq = (bitEq_imp (a 0) (b 0) eq)) A
(compEq_imp (SUC n) abeq=
Jeaaen.
(compEq.impn a b an) A
(bitEq_imp (a (SUC n)) (b (SUC n)) em) A
(and2_imp en em ¢q))

I compEq_impn a b @ = compEq_specn a b ¢

2.4 REGISTERS

Registers are used to store the state of an MMU over time. This theory was implemented by Phil
Windley and included in this report for the sake of completeness.

Registers receive an input bitVector, and clear and load control signals. A register’s output at
time t+1 depends on its input control lines c1r and 1d at time ¢. The output remains unchanged
if both control lines are F. If both lines are high, the register is cleared. A register implementation

is constructed from primitive gates, and a formal proof shows the implementation is equivalent to

the specification.

tdes Teg spec v i ld clr out =
(V t:pum . out(t+1) = (clr t — ZEROES w | 1dt — i ¢ [ out t) )

A
(out 0 = ZEROES w)
by (reg_ imp 0 i 1d clr out = d_ff (i 0) 1d clr (out 0))
A

(reg_imp (SUC n) i 1d clr out = ((reg impn i 1d clr out) A
(d_ff (i (SUC m)) 1d clr (out (SUC n)))))

+ reg imp v i 1d clr out = Treg_spec ¥ (ABS v i) 1d clr (ABS w out)
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3.0 SIMPLE MEMORY MANAGEMENT UNITS

3.1 PAGE CHECK TLM

The page check TLM (translation look-aside module) is the simplest MMU. Protection is generally
needed on a page or segment basis’ ; rarely on a word basis 1, Memory addresses can be decomposed

into a page and a page offset descriptor. The page check TLM acts only on the page descriptor.

The device will either compare a received page descriptor? with another value previously stored
in a register or store a new value for future comparisons. When a comparison is performed, the unit
returns T when the two values are the same. The device is expected to return a result one time
epoch after receiving its inputs. The units are defined using the auxiliary definitions mentioned in
the previous section and are correct for all bitVector widths. To isolate the timing dependencies,

the specification is divided into two parts: pgCk and pgCk_spec.

The definition pgCk.spec describes the timing details. The register and acknowledgment out-
put values at t+1 are a function of the input values at time ¢. The function is specified by pgCk.

The definition pgCk accepts a bitVector address, a write/compare command line and a register
and returns a tuple containing the resultant register value and acknowledgment output. If the
command line is T, the register is updated and the output acknowledgment is set to T (regardless
of the comparison result). If the command line is F, indicating a comparison should be performed,

the output acknowledgment is dependent on the result of the comparison.

The implementation pgCk-imp is constructed by composing a register, a comparison unit and
an OR gate (Fig. 3.1-1 3). The definitions show the use of the ABS function to allow signals to take

arguments out of order. The implementation is shown to imply the specification.

1Here a page is a contiguous block of memory words; eack block being a fixed length. Segments are blocks of
words but all segments need not be of the same length.

3Note that the concrete implementation of a page descriptor is a subsequence of a bitVector.

3The reset box in the figure is set to F in the definition.
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Faeg PECk n address write rgstir =
(erite = T) — (address, T) |
(bvEQUAL n rgstr address)— (rgstr, T) | (rgstr, P)

F i PECK_spec n addr TVC reg ack =
V (t:oum). (reg(t+1), ack(t+1)) = pgCk n (addr t) (r¥C t) (reg t)

Fag peCk_imp n addr r¥C reg ack =
Ve.3gle.

(reg_imp n addr r¥C bitFalse reg ) A
(comp_impn (ABS n reg t) (ABSnaddrt) gle) A
(or2_imp e (rC t) (ack (t+1)) )

+ pgCk_imp n addr r¥C reg ack ==> pgCk_spec n (ABS n addr) r¥WC (ABS n reg) ack

Address .

——
- ACK
@_IREC _ COMP

wC

Figure 8.1-1: Page Check TLM

3.2 PAGE CHECK TLM WITH SUPERVISOR LINE

The simple page check unit cannot guarantee that processes will not interfere with one another.
Processes cannot be trusted to leave the page check unit’s register unmodified. The above unit
cannot prevent a process from writing to the TLM unit and altering the protection scheme intended
by the operating system kernel. The enhanced unit receives input from a supervisor input line.

Only when the supervisor line is high, can a write to the page check register occur.

We assume that the CPU has two control states: a supervisor state intended for operating
system use and a user state for use by application processes. Generally, the supervisor line status
is defined by a bit in the central processing unit’s program status word (PSW). Microprocessors,
designed for multiprocessing, restrict access to the PSW so that process status bits (including the
supervisor bit) can be modified only when the system is executing in supervisor state. This scheme
assumes that nonkernel tasks execute in user state. The supervisor bit can be extended into a

process identifier field or a security ring field.

The implementation requires one additional AND gate and an internal line. The proof is quite

similar to the pgCk proof; it requires an additional case split to deal with the supervisor line.
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tdes PECka_spec n addr TWC sup reg ack =
¥ (t:pum). (reg(t+1), ack(t+1)) =
PECk n (addr t) (xVC t A sup t) (reg t)

Fdes PECka_imp n addr TWC sup reg ack =
Vt.3zxgle.
(and2_imp (z¥C t) (sup t) (x t) ) A
(reg_imp n addr x bitFalse reg ) A
(comp_imp n (ABS n reg t) (ABS n addr t) g1 @) A
(or2_imp ¢ (x t) (ack (1+1)))

b pgCka_imp n addr r¥C sup reg ack = pgCka_spec n (ABS n addr) r¥C sup (ABS n reg) ack

address .

COMP

" |Red—=

. L_D-A—C-K

super

Figure 8.2-1: Page Check TLM With Supervisor Line

3.3 BASE AND BOUNDS MMU

The base and bounds MMU (bb-MMU) extends the capabilities of the page check devices. This
last “simple” MMU is actually much more sophisticated than the previous devices. While the page
check units left unspecified how the device’s register is addressed, the bb-MMU provides a more
complete interface to a system bus. The device expects inputs consisting of an address (in bit Vector
form), a supervisor line, a read/write line and a data value. When a request is valid, the device

asserts an acknowledgment signal.

The bb-MMU is positioned between the CPU and memory and must recognize when bus
requests are targeted to itself. The bb-MMU protection register is accessed as a memory location.

When the supervisor line input is asserted (T) the bb-MMU will operate in supervisor mode.

In supervisor mode, the bb-MMU compares a memory request’s bus address with a constant
to determine whether the protection register is being accessed. If the address does match and the

read/write line is T, then the protection register value will be updated. Whether the protection

19



register is updated or not, the acknowledgment line will be asserted.

In user mode, the bb-MMU decomposes the input address and register output into a segment
and offset component. The bb-MMU verifies that the address segment matches the stored segment
component (the base) and that the address offset is not greater than the stored offset (the bounds).
The top bits (between n and s) of the address bitVector represent the segment identifier.

The specification is divided into parts to distinguish the supervisor and user mode behaviors.
The specification baseBoundCk._spec is only valid when the segment offset size s is less than the
bitVector size n. Note that the data and address bitVector sizes are implicitly defined to be the
same length. The specification defines the resulting state as a tuple consisting of the protection
register value and the acknowledgment line value. When the supervisor line is high, bbSUPERV
defines the result state, otherwise, bbCOMP defines the result state.

The parameter ADDR represents an unspecified constant denoting the address of the protection

register.

Fdes DDSUPERV n bbReg addr data ADDR rv =
( rs — ((bvEQUAL n addr ADDR) — (data, T:bool) | (bbReg, T))
| (bbReg, T) )

ke DHCOMP B 8 bbReg addr =
(bvEQUAL n (bvPART n s bbReg) (bvPART n s addr) A ~(bvGREATER s addr bbReg) )

— (bbReg, T:bool) | (bbReg, F)

F4es DbNextState n s bbReg addr data ADDR super rv =
( super — BLSUPERV n bbReg addr data ADDR rv |
| bLbCOMP =n s bbReg addr )

Fdes baseBoundCk_spec n s bbReg addr data ADDR super rv ack =
(s <n) = V t. ( bbReg(t+1),ack(t+1) ) =
bblextState n s (bbReg t) (addr t) (data t) ADDR (super t) (rv t)

The implementation is defined using primitive gates, as well as the register and full comparison
unit described previously. A more efficient implementation would use the equality comparison unit.

The abstract function PRT is used to split off a subsection of a bitVector.
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Fdey PRT v max min (sig:num->num->bool) (t:num) (n:pum)
= (n > max) — F |
(n < min) — F |
(<= w) — (signt) | ARB

F4¢f baseBoundCk_imp n s bbReg addr data ADDR super rv ack =
(s <n) = Vit
(3 writeBB g0 gi g2 10 11 12 e2 x addrMatch goodSeg good0fs ok.
(reg_imp n data writeBB bitFalse bbReg) A
(comp_ixp n (ABS n addr t) ADDR g0 10 (addrMatch t)) A
(and2_imp (rv t) (super t) (x t)) A
(and2_imp (addr¥atch t) (x t) (vriteBB t)) A
(comp_imp n (PRT n n s bbReg t)
(PRT n n » addr t) g1 11 goodSeg) A
(comp_imp s (ABS n addr t)
(ABS n bbReg t) g2 12 2) A
(inv g2 goodDfs) A
(and2_imp goodOfs goodSeg ok) A
(or2_imp ok (super t) (ack (t+1)) )

data address:
~ [SEG_[OFFSET |

address

_ COMP

EQ
rear < T L
R
" {COMP

RW GRTR D

super

Figure 8.3-1: Base and Bounds MMU

The proof is substantially more complicated than the proofs for the page check units. In the
process of verifying that the implementation implies the specification, several intermediate lemmas

are useful. While they are all seemingly obvious, HOL requires a proof for each.

21



Lenna 0
F(s<n)=> (PRTnns sigt) = (bvPART n s(ABS n sig t) )

Lemma 1
F (bvEQUAL n(bvPART n s(ABS n bbReg t)) (bvPART n s(ABS n addr t)) A
=~ bVGREATER s(ABS n addr t)(ABS n bbReg t)) =
(= bvGREATER s(ABS n addr t)(ABS n bbReg t)) A
(bvEQUAL n(bvPART n s(ABS n bbReg t)) (bvPART n s(ABS n addr t)))

Lenma 2
F@>»0) = (SUC (PRE n) -1) + 1 = (SUC(PRE n))

Lemma 3

+ (o:oum). (@ > 0 ) = (SUC (PREn)) = n

Proving the final theorem required 492.7 seconds of CPU time and generated 31,227 intermediate

theorems.

i baseBoundCk_imp n s bbReg addr data ADDR super rv ack =
baseBoundCk_spec n 8 (ABS n bbReg) (ABS n addr) (ABS n data) ADDR super rv ack

Proper management of the register’s contents ensures that a process can only modify a specified
address space. Although very simple, a set of these devices composed together would be sufficient
to satisfy a system’s security need to enforce process noninterference. While the use of multiple
devices is not strictly necessary, a system with several devices might considerably reduce operating

system overhead.
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4.0 VIRTUAL ADDRESS TRANSLATION MMU

The MMU is programmed through two memory-mapped control registers:

a. A protection register governs the range of valid virtual memory addresses a process may

access.

b. A translate address register designates the base real address accessible in memory.

Processes cannot be trusted on their own to leave the unit’s registers unmodified. Only when
the supervisor line is high will the unit permit a register write. This ensures that the security
protection scheme intended by the operating system kernel cannot be altered intentionally or un-
intentionally by user processes. This scheme assumes that nonkernel tasks execute in user state.

The supervisor bit can be extended into a process identifier field or a security ring field.

The protection register and virtual addresses are partitioned into a segment and an offset?.
A request is validated if the segment address matches the stored segment component and the
offset is less than or equal to the stored bounds component. When a request is validated, the
MMU constructs a real address using the offset of the requested address and the translate address
register. When the supervisor line is asserted, all accesses are authorized and address translation

is not performed.

4.1 SPECIFICATION

The abstraction functions PRT and PRTA are used to split off a subsection of a bitVector 5. The
function definition VtoR, creates a real address by replacing the segment identifier with the real

base offset; the bottom s bits of the virtual address remain unchanged.

tdey PRT v max ain (sig:num—num—bool) (t:num) (n:num) =
(n > sax) — F |
(n < min) — F |
(n¢s w) — (signt) | ARB

F4ey PRTA v max min (sig:num—bool) (n:num) =
(n > max) — F |
(n < min) — F |
(n <= u) — (sign) | ARB

Fdey VtoR reald virtd s n = (n > 8) — (reald n):bool | (virtd n)

$Here a page is a contiguous block of memory words; each block being & fixed length. Segments are blocks of
words but all segments need not be of the same length.
3Please see the appendix for a description of bitVectors and many of the device building blocks.
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The specification virtBBCk.spec is defined as a state transition system. The specification
defines the state and environment at time t+1, as a function of the state and environment at time
t. The state is maintained in variables (bbReg, vaReg). The input environment consists of the
address bus value, data bus value, and control bus signals (addr, data, super, rw). The output
environment consists of a request validation line and a real address (ack, outAddr). The functions
¥SUPERV and vCOMP define the supervisor and user mode behaviors, respectively. The parameters
n, s and ADDR serve as constants defining the most significant bitVector bit, the most significant
address offset bit and the base address of the MMU registers. The size of the bitVectors must be
greater than the segment offset for the specification to be meaningful.

tdes VSUPERV n bbReg vaReg addr data ADDR rv =
( (zw A (bvEQUAL n (bvPART n 1 addr) (byPART n 1 ADDR) ))
-+ (addr 0) — (data, vaReg, addr, T:boocl) |
(bbReg, data, addr, T:bool) |
(bbReg, vaReg, addr, T) )

Fdos VioR reald virth s n = (n>s) — (reald n):bool | (virtd n)

Fgey WCOMP n 8 bbReg vaReg addr =
(bvEQUAL n (bvPART n s bbReg) (bvyPART n s addr) A
— (bvGREATER s addr bbReg) )
— (bbReg, vaReg, (VtoR vaReg addr s), T:bool) |
(bbReg, vaReg, addr, F)

F4ey vlextState n s bbReg vaReg addr data ADDR super rv =
super — VSUPERV n bbReg vaReg addr data ADDR rv |
vCOMP n s bbReg vaReg addr

F4des virtBBCk_spec n s bbReg vaReg addr data ADDR super rv ack outdddr =
(s <n) =
¥ t. ( bbReg(t+1),vaReg(t+1), outAddr(t+1), ack(t+1) ) =
vEaxtState n s (bbReg t) (vaReg t) (addr t) (data t)
ADDR (super t) (rw t)

4.2 IMPLEMENTATION

The implementation virtBBCk_imp is defined using primitive gates, registers and the full comparison
unit described previously. A more efficient implementation would use an equality comparison unit.
The function pick-imp defines a bitVector MUX. The datapath can be seen in Figure 4.2-1.
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F4es pick_imp (wordd :num—bool) (vordB :num—bool) (which:bool) res
= (shich = T) — (res = wordd) | (res = wordB)

Fgey virtBBCk_imp n s ADDR bbReg vaReg addr data super rv ack outdddr=
(s<n) = Vt.
(3 wBB wVA select x aMO aM1 aM2 goodSeg goodOfs ok mok nxlat g 1 e.

(and2_imp (rv t) (super t) (x t)) A
(compEq_imp n (PRT n n 1 addr t) (PRTA n n 1 ADDR) (a0 t)) A
(and2_imp (aMO t) (x t) (aM1 t)) A
(inv (addr 0 ¢t) (aM2t) ) A
(and2_iap (aM1 t) (addr 0 t) (wBB t)) A
(and2_imp (aM1 t) (aM2 t) (¥VA t)) A
(reg_imp n data wBB bitFalse bbReg) A
(reg_imp n data wVA bitFalse vaReg) A
(compEq_imp n (PRT n n s bbReg t)

(PRT n n s addr t) goodSeg) A
(comp_imp » (ABS n addr t)

(ABS n bbReg t) gl e) A
(inv g goodlfs) A
(and2_imp good0fs goodSeg ok) A
(or2_imp ok (super t) (ack (t+1)) ) A
(inv ok nok ) A
(or2_imp nok (super t) nxlat) A
(pick_imp (ABS n addr t) (ABS n vaReg t) nxlat (select t)) A
¢ (outAddr (t+1))= (VtoR (select t) (ABS n addr t) s ) )

data ,
address
“"—q:‘_comp
5l i
EG >
RW _|® =0y
COMP
GRTR >
eal >
(®H EG-‘ SEL—~—
-§D— ‘ - - address

super ® ACK

Figure {.2-1: Base and Bounds MMU with Virtual Address Translation

4.3 VERIFICATION

Several simple intermediate lemmas were proven with the final theorem requiring 1,209 seconds of

CPU time executing on a Sun SparcStation. The final proof generated 64,185 primitive inferences.
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Lemna 0
F PRTnn s sig t = byPART n s(ABS n sig t)

Lenma 1

 (bvEQUAL n(bvPART n s(ABS n bbReg t)) (bvPART n s(ABS n addr t)) A
=~ DYGREATER s(ABS n addr t)(ABS n bbReg t)) =
(= byGREATER s(ABS n addr t)(ABS n bbReg t)) A
(bvEQUAL n(bvPART n s(ABS n bbReg t)) (bvPART n s(ABS n addr t)))

Lenma 2
F VtoRaas=a

Lemma 3
+ PRTA n n s sig = byPART n s sig

Lemms 4
t addr Ot = ABS naddr t O

Several of these units could be combined to provide sufficient hardware support for a segmented
and paged memory. This design also supports multiple process requirements assuming the top bits
of an address specify a process identifier.

+ wirtBBCk_imp n s ADDR bbReg vaReg addr data super rv ack outiddr =
virtBBCk_spec n s ADDR (ABS n bbReg) (ABS n vaReg) (ABS n addr)
(ABS n data) super rv ack outAddr

26



5.0 MEMORY-RESIDENT TABLE MMU

This MMU provides protection and address translation on a segment basis. These functions
are only in effect when the MMU operates in user mode. When operating in supervisor mode,
the memory protection mechanism is inactive and requests are passed through without address
translation.

Addresses consist of a segment identifier and a segment offset. The segment identifier is
used to fetch the segment descriptor. Segment descriptors are located in a memory-resident table
and consist of two words. The first word specifies the segment size and read, write and execute
permissions. The second word acts as a base address for the segment’s real location in memory. To
translate from a virtual address to a real address, the MMU adds the segment offset to the segment
base address. To support segment paging, the first word also contains a bit indicating whether the
segment is presently in memory. If this bit is F, the operating system is free to use the second word

as a disk offset or in any other fashion.

The location of the table is determined by the MMU’s segment table pointer register. This
register is accessible only in supervisor mode. The MMU assumes the table provides an entry for

all possible segment descriptors.

Py pomemprcon- QPR +,,, temmmcccccccccsonae +

0: |AvaillRead|Write|Execute|....| Segment Size |

R, e 4oommem- 4,., d-—mcemcmcercecanes +
Gemcremccsceersememessrmesessesse-sescoscmemoGoos +
1: | Real Offset |
PR P S PP EL S LS T b +

The MMU described here must fetch a descriptor from memory for each access. Initial work

on a cache to speed up performance is discussed in a subsequent section.

The previous units were constructed in a bottom up manner—from the gate level up. Using
the verification of these units as a model, devices that compare one bitVector with another in an
arbitrary way could be specified and successfully verified. The device described in this section takes
a top-down approach to the verification of a much more complicated device. The implementation
level here is the electronic block level. We construct a generic theory describing an MMU where

geveral functions are left abstract.
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5.1 GENERIC THEORIES

A generic theory consists of three parts:

a. An abstract representation of the uninterpreted constants and types in the theory. The ab-
stract representation contains a set of abstract operations and a set of abstract objects. The
semantics of the abstract representation are unspecified. Inside the theory, we don’t know

what the objects and operations mean.

b. A List of theory obligation predicates defining relationships between members of the abstract
representation. When a theory is instantiated, these predicates must be proven about the
concrete representation. Within the theory, the obligations represent axiomatic knowledge.

The abstract MMU theory does not contain any theory obligations.

c. A collection of abstract theorems about the representation.

For a more complete description of abstract theories see (ref. 23).

Using the abstract theory package, a set of selector functions can be created. When applied

to an abstract representation, a selector function extracts the desired function.

Instead of dealing with concrete data types such as bitVectors with a specific length, the
abstract MMU works with data values of abstract types *wordn, *address and *memory. The

abstract representation provides a set of functions that manipulate these types.

Previous device theories have considered the size of the segment identifier and segment offset
fields within a bitVector. The abstract representation ignores these details by providing functions
that return the segment identifier or segment offset fields from an address (segId and segDfs,
respectively). There is also a function segIdshf, which returns the offset of a segment descriptor
within the memory-resident segment table for a given address. Since descriptors require two words,
the implementation of this function simply shifts the segment identifier to the left 1-bit position
(e.g. , adds a trailing zero bit).

The abstract functions availBit, readBit, writeBit and execBit extract a bit value from
an argument of type *wordn. These functions are applied to the first word of a segment descriptor.

Several functions that operate on two-tuples are available. Given a pair of *wordn values,
add returns a value of *wordn. Functions addrEq, ofsLEq and validAccess replace the concrete

comparison units used in previous units.
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Additional abstract coercion functions are available to convert values between types. If the
theory were instantiated, the concrete implementation of the abstract types would likely be the

same (bitVectors) and these functions would be unnecessary.

Memory is also treated abstractly. The abstract representation provides a fetch function, and

a transformation function 6.

new_type_abbrev (‘BWE‘, ":bool # bool & bool");;

let mmn_abs = nev_abstract_representation

(‘segld’, n: (saddress -> ewordn)" );

(‘segOfs’, :(saddress -> svordn)" );

(‘segldsht‘, n:(saddress -> evordn)" );
b 3

(‘availBit’, »: (evordn => bool)" )

(‘readBit’, ». (svordn => bool)" )H

(‘sriteBit’, »: (syordn -> bool)" )

(‘execBit', »: (swordn -> bool)" )i
12

(‘add‘, " (swordn $ eswvordn ->ewordn)" );
1%

(‘addrEq‘, w;(saddress # saddress -> bool)" );

(‘ofslEq‘, »:(saddress # svordn  -> bool)" )i

(‘validiccess‘, w, (saddress & svordn 8 RVE => bool)" );
% Coercion functions %

(‘val®, »: (evordn ~> nua)" b

(‘wordn’, *: (num-> ewordn)" )

(‘address‘, % (swordn -> saddress)" )i
% Memory functions X

(‘fetch’, “: (smemory § saddress) -> svordn" );

(‘trans‘, ":ememory -> ¢memory” ):
1

let mmu_ty = abstract_type ‘smu_abs’ ‘segld‘;;

A type abbreviation RWE is also defined to be a three tuple of bit values. Selector functions
rBIT, wBIT and eBIT access the first, second, and third bits, respectively.

Faey TBIT rwe = (FST rve)

Fdef WBIT rve = (FST (SED rve))

Fdey BIT rwe = (SED (SED rve))

5.2 SPECIFICATION

The specification is decomposed into several rules and ignores timing details. The timing details
are spelled out in the final correctness theorem. The state of the MMU specification is a three-tuple

consisting of a boolean acknowledgment, a memory address and the table pointer register value.

$This function s included for future extensions
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The definitions superMode and userMode describe the behavior of the MMU when operating
in their respective modes. The definition legalAccess uses many of the abstract functions to
fetch from memory the appropriate segment descriptor and compare it with the request’s access

parameters. The definition vToR constructs a real address from a virtual address.

The variable r in all definitions is the abstract representation.

MU SPECIFICATIOR

F4ey legalAccess r vAddr tblPtr rve mea =
let a = (fetch r)( menm,
(address r)((add r) (segldshf r vdddr,tblPtr) )) in
€ (validiccess ) (vAddr,a,rwe) A (ofslEq r) (vAddr,a))

Fgéey vTOR r viddr tblPtr mea =
let a = (fetch r) (mem, (address r)
((add r)( (wordn r 1), (add r)(segldshf r viddr,tblPtr) ))) in
(address r) ((add r) (seg0fs r viddr, a))

4oy superMode r viddr rve tblPtrADDR tblPtr data mem =
((sBIT rve) A (addrEq r (vAddr,tblPtrADDR)) )
- ( T, vAddr, data ) |
( T, vAddr, tblPtr )
kg userMode r viddr rve tblPtrADDR tblPtr data mea =
( legaliccess r viddr tblPtr rve mem
— ( T, (vToR r vAddr tblPtr mem), tblPtr ) |
( F, wAddr, tblPtr ) )

b4y muu_spec r viddr rve tblPtrADDR tblPtr data mem superv =
(superv — superMode r viddr rve tblPtrADDR tblPtr data mem |
userMode r vAddr rve tblPtrADDR tblPtr data mem )

8.3 IMPLEMENTATION

The implementation is constructed from electronic-block model components. These are defined as
specifications for the behavior of a gate-level implementation. Many of the devices specify their
timing behavior as well. The building blocks consist of a security comparison unit, an address
match unit, a memory fetch unit, an adder, registers, latches, muxes, and a control unit. Most of
the device definitions are self-explanatory with the exception of the memory and the control unit.

These two units will be described in greater detail.

The system bus provides the following to the MMU:

a. A request line.
b. A supervisor state line.
¢. Read/write/execute request type lines.

d. An address bus value.
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e. A data bus value.

Fgey secUnit_specr a b rve ok =
Ve, ok (t+41) =
((validiccess r) ((a t),(b t),(rve t}) A (ofslEqT) ((a t),(b t)))

k4o addUnit_specT abc = ¥ t:pum. ¢ (t+1) = (add r ( (a ), (b t) ))

F4ey suxlnit_spec ¥ a b out w =
V t:num. (out (t41)) = (v (t+1)) — address r(b (t+1)) | (a t)

Faer mux3Unit_specabcout v =
¥ t:num. (outt)-(vt-o)—ottl(wt-l)—btlct

tgep splitUnit_spec 1 virt id ofs =
¥ t:num. ((id t) = (segldsht r) (virt t)) A
((ofs t) = (seglfs r) (virt t))

F4ey latchUnit_spec r i out ctrl =
¥ t:pum. out (t+1) = ctrl (t1+1) — out t | (i (t+1))

Fgey TegUnit_spec T ild clr out =
(Y t:num. out (t+1) = (clr t — (wordnr 0) {1dt — it loutt)) A
(out 0 = (wordn r 0) )

Fdes smatchUnit_specraba =
Y (t:num). m(t+1) = ( addrEqr (a t, b t) ) — T:bool | F"

ey onelnit_spec r t = (wordn 1

Fg4ey bitFalse t = F

5.4 MEMORY

The memory unit specification defines an interface to memory that is synchronous. If the request
line regis high at ¢, then at t+1, data will contain the requested memory value and the done line
will be T. If there is no request at time ¢, then done at t+1 will be F. To construct an asynchronous
version, this specification could be modified to state that given a request at time t, the next time

done is T data will hold the requested value from memory.

When composing the MMU with a cache, the synchronous specification will also change. If
there is a cache hit, a value would be returned much sooner (perhaps an order of magnitude) than

if main memory were to be accessed.

The control unit and the final correctness statement do not rely on a synchronous memory

unit specification. The proof could be easily modified to fit these other models.
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gy memoryUnit_spec r req addr data done men =
((dataO=wordnr 0) A (done 0 =F)) A
Vit. ( (xeqt) — ( (data (t+1) = fetchr (mem t, addr t) ) A
(done (t+1) = T) ) |
¢ (data (t+1) mwordnr 0) A
(done (t+1) = F) ) )

8.5 CONTROL UNIT

To process each memory request, the control unit will pass through several phases. The unit is a
clocked device. At each clock tick the control unit may change its phase depending on the results
computed by the other internal units and the MMU input from the system bus.

The control unit inputs include:

a. The request line (reqln).

b. The supervisor line (super).

¢. The request type (read/write/execute) lines (rwe).
d. The address compare result line (match).

e. The security unit result line (secOk).

f. The memory fetch result line (fdone).
The control unit output lines include:

a. The MUXes that control the adder’s inputs (muxC).

b. The adder output latch (IC).

¢. The MUX that controls the bus memory address lines (xlat).
d. The register update lines (tmpC, tblC).

e. The memory request line (rReq).

f. The MMU done line (done).

g. The MMU access acknowledgment line (ack).

There are six distinct phases; however, not all phases are executed for each request. Which
phases are executed depends on the validity of the memory request. Request evaluation begins
with the control unit in phase 0 and completes when phase 0 is again reached. A valid request

will require five phases with a delay of at least one time unit before a phase change. Most phases
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require one clock cycle; however, memory requests for a segment descriptor may take several. The

control unit will busy-wait until a memory fetch completes.

Fdef controlUnit_spec reqIn super rve match secOI fdone
muxC tapC tblC 1C rReq xlat done ack phase =
((muxC 0,tapC 0,tblC 0,1C O,rReq 0,xlat 0,done 0,ack 0, phase 0) =
(o .F.P.P.P.P.I’.P.O))
A
(¥ ¢ .(muxC(t+1),tmpC(t+1),tb1C(t+1),1C(t+1),rReq(t+1) ,xlat(t+1) ,done(t+1),
ack(t+1) ,phase(t+1) ) = Y M ttl rxda P %
Y Unba eloc B X
¥ X plt qtnk A %
(phase t = 0) —
(regqln t — (o, F,F,F, F,F,P,F, 1) |
( ol POP"' P.P.P.P. o)) '
(phase t = 1) —
(super t —
((sBIT (rve t)) A match t) — (0o, F,T,F, FEPF, 5 |
(o, F,F,F, F,F,T,T ,0) |
(2, 1,F,7, T,T,F,F, 2)) |
((phase t = 2) A fdone t) — (1, F,F,F, T,T,F,F, 3) |
((phase t = 3) A fdone t) —
(secOk t — (o, F,F,F, F,T,F,F, 4) |
(o, F,F,P, F,F,T,F, 0)) |
(phase t = 4) — (o, F,F,T, P,T,7.T, O) |
(phase t = 6) — (0, F,F,F, F,F,T,T ,00 |
(muxC t,tapC t,tblC t,1C t, F ,xlat t,done t,ac t,phase t))

The dataPath definition describes the interconnection between all the units other than the

control unit. The mmu_imp joins the control unit with the data path.

Data Path

r viddr vData rve mem tblPtrADDR tblPtr riddr
auxC tapC tblC 1C rReq xlat match secOK fdone =

3 (muxi mux2? id ofs addOut data latOut :num—evordn)
(secData:num—sewordn).

Fdes dataPath

(reglnit_spec r vData tblC bitFalse tblPtr) A
(reglnit_spec r data tmpC bitFalse secData) A
(secUnit_spec r vAddr secData rve secOK) A
(splitUnit_spec r vAddr id ofs) A
(mux3Unit_spec  id ofs (onmeUnit_spec r) muxl nuxC) A
(sux3Unit_spec tblPtr data latDut mux2 muxC) A
(addUnit_spec r suxi mux2 addQut) A
(latchUnit_spec r addOut latOut 1C) A
(matchUnit_spec T vAddr tblPtrADDR match) A
(muxUnit_spec r viddr latOut riddr xlat) A

(memorylUnit_spec r rReq riddr data fdone menm)

Faef

sau_imp r viddr vData rve superv tblPtr tblPtrADDR reqln
riddr done ack xlat mem phase =
3 (suxC :num—nun) (tmpC tblC 1C rReq match secOKk fdone :pum—bool) .
(controlUnit_spec reqIn superv rve match secOk fdone
suxC tapC tblC 1C rReq xlat done ack phase)
(dataPath r vAddr vData rve mem tblPtrADDR tblPtr rAddr
muxC tapC tblC 1C rReq xlat match secOK fdone)

A
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Figure 5.5-2:
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5.6 MEMORY MANAGEMENT EXECUTION CYCLE

When the control unit is in phase 0, it will busy-wait for a request and then proceed to phase
1. During phase 0, the address comparison unit (matchUnit_spec) can determine whether the
bus address matches the MMU’s table pointer address. The result is put on the match line. The
split unit splitUnit_spec divides the address into its segment table offset and segment offset

components.

In phase 1, the supervisor line determines what the next phase will be. When the supervisor
line is high, two results are possible. When the request is a write and the match line is T, the
control unit will direct the table pointer register to store the value on the data bus. The control
unit will set the next phase to 5. After one clock tick in phase 5, the acknowledge and done lines
are asserted and the control unit returns to phase 0. This ensures the data bus value will remain
constant while the register updates its store. If the request is not directed to the segment table
pointer register, the done and acknowledge lines are asserted and the phase is set to 0. Since the

zlat line remains F, the original request is effectively passed on to memory without modification.

During this time, the adder will compute the memory address of the segment descriptor using
the shifted segment identifier and the segment table pointer (output from the MUXs). When the
supervisor line is not high and the control unit is in phase 1, a memory fetch will be initiated using
the adder output. The adder output latch control line is asserted to keep this value constant. The
temporary register write control line (tmpC) will be asserted to capture the first word of the fetched

segment descriptor. The control unit will move on to phase 2.

The control unit will remain in phase 2 until the fdone line is asserted indicating the memory
fetch has completed. During this time, the adder will have incremented the address so that the
second word of the segment descriptor can be fetched. The control unit will then move on to phase

3.

The control unit will also remain in phase 3 until the fdone line is asserted indicating the
memory fetch has completed. If the security unit has asserted the secOK line, phase 4 is entered.
The delay provides sufficient time for the adder to create the real address from the second word of
the segment descriptor (fetched word) and the segment offset. In phase 4, the x1at, done and ack

lines are asserted and the control unit returns to phase 0.

If the security unit does not authorize the memory request, the control umnit does not enter

phase 4, but, instead, returns to phase 0 asserting the done line, but not the ack line.
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Note that the done line is asserted only when the MMU completes its execution cycle—and
only for one clock cycle.

8.7 VERIFICATION

Several auxiliary definitions are used to express the final correctness statement. To relate the
implementation to the specification, a temporal abstraction is constructed using the two predicates
Next and First. The predicate First is true when its argument tis the first time that gis true. The
predicate Next is true when ¢2 is the next time after 11 that g is true. The predicate stable.sigs
states that between t and 2 the MMU inputs will remain constant.

Fdey First gt = (Vp:time.p<t = = (gp)) A (gt)

Faep Bext g (t1,82) = (t1 < t2) A
(Ve:time . t1 <t A t<t22 - (gt)) A (gt2)

k4o stable_sigs t1 t2 vAddr rve tblPtrADDR data mem super =
Yi'. t1 <t A ¢t <Ct2 >
(super t' = super t1) A
(vAddr t* = viddr t1) A

(rve t’ = rve t}) A
(data t' = data ti) A
(nea t' = nen ti) A

(tblPtrADDR t’ = tblPtriDDR t1)

The correctness theorem states that if the implementation is in phase 0 and a memory request
is made, the implementation will respond ¢ time steps later such that the state of the implemen-
tations matches the state defined by the specification for a set of given MMU inputs. The inputs
must remain stable until the MMU responds to a request. If a memory request is not made, the
acknowledgment line remains F, the phase remains 0 and the MMU table pointer register remains
unchanged.

I mwu_imp r vAddr vData rve super tblPtr tblPtrADDR reqln riddr
done ack xlat mem phase =
s,
(phase t = 0) =
(reqIn t —
(3 c. Next done(t,t + ¢) A (phase(t +c) =0) A
(stable_sigs t{(t + c)viddr rve tblPtrADDR vData mem super =
(umu_spec ¥ (vAddr t) (rve t) (tb1PtrADDR t) (tblPtr t)
(vData t) (mem t) (super t) =
ack(t + ¢),rAddr(t + ¢),tblPtr(t + c))))
} ( (ack(t + 1) =F) —
(phase(t + 1) = 0) —
(tblPtr(t + 1) = tblPtr t) )
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Table 5.7-1: Abstract MMU Verification Script Run-Times

File name Time (CPU sec.) | Inferences
mmu_abs 85.4 34
mmu.def 132.1 50
mmu._aux 81.6 4,385
ctrlUnit lem 2,850.0 153,977
mmu._prf 2,665.5 122,537

5,814.6 280,983

The correctness theorem required 2,635.2 seconds of CPU time running on a SPARCStation
with 16 Mbytes of memory. HOL generated 121,858 primitive inferences to prove the theorem.
Many lemmas were proven to support the final MMU correctness result. The proof effort was

organized into a hierarchy of theories as presented in Table 5.7-1.

5.8 CONTROL UNIT LEMMAS

Control unit lemmas proven included the following:

a. Each phase was shown to be distinct.

b. The control unit phase state can be only one of six possible values.
¢. Phase 0 can never follow phase 2.

d. During phase 0, the state of the MMU does not change.

e. A theorem showing a correct expansion of the control unit definition.
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Table 5.8-1; Conirol Unil Theorems

Lemma Time (CPU sec.) | Inferences
PHASE0.UNIQUE 9.3 1,004
PHASE1.UNIQUE 10.5 952
PHASE2.UNIQUE 8.9 917
PHASE3.UNIQUE 9.1 904
PHASE 4.UNIQUE 9.1 913
PHASE5_.UNIQUE 10.6 944
SIX_PHASES.ONLY 1,426.5 72,872
NOT PHASE2.THEN.0 112.0 6,820
PHASEOIDLE 1,146.5 65,672
CTRL_UNIT.EXPAND 35.5 2,774

2,850.0 | 153,977

While the phase unique lemmas were trivial to prove, the other lemmas required substantial
effort. A table listing the lemmas, the required CPU time to verify them and the number of

intermediate theorems generated is presented in Table 5.8-1.
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6.0 CONCLUDING REMARKS

Several enbancements could be made to the abstract MMU.

a. It would not be difficult to add a register that specified the number of valid entries in a
segment table. The incoming segment id would be compared with this new value. When the
id is greater than the stored value, the MMU could generate a segment table fault.

b. Another read-only status register could be added to indicate the type of fault that occurred.

c. A paging unit could be modeled based on the segment table unit. The device would effectively
be the same as the segmentation unit. The stored real address offset might serve as the page

table pointer.
d. Values were added together instead of being merged together, which is more common.

e. A cache could be added (see section on register stacks).

This research was intended to serve as a vehicle to investigate how we could reason about
changes in a device under development. The compare units and the page check units demonstrate
what changes to a proof are necessary for small device changes. What is of greater concern, however,
is the construction of fire walls within a design; being able to recognize what effect a structural
change would have and how to keep as much of an old proof as possible. The use of abstraction

seems to satisfy these needs, as well as making proofs more tractable.

It also seems apparent that a generic execution tactic could be constructed to ease the pain
of performing symbolic execution by hand. This would greatly simplify one of the most arduous

tasks in interactive proof verification using HOL.

Abstract theories provide a mechanism to ignore many details that can be handled at lower
levels of a design. For example, the abstract MMU focuses attention on the correctness of the
control unit. Using the abstract theory package, abstract devices can be instantiated with verified

gate level implementations of the abstracted functions.

The abstraction mechanism also permits design changes without the need for a complete rever-
ification effort. The correctness theorem for the abstract MMU is not dependent on the layout of

the segment protection descriptor or the specific protection requirements.

The basis for a secure hardware platform is a fully functional MMU. The MMU presented here

serves as a model to verify a more sophisticated device, such as the hardware reference monitor
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SIDEARM (ref. 24).

The MMUs verified provide sufficient hardware support for an operating system kernel to
ensure process isolation and virtual memory. The device designs can be simplified to define a

paging unit. Future work will investigate the composition of segmentation and paging units.

A register stack that implements a FIFO replacement strategy has also been verified. This
is being enhanced to construct an MMU cache with either an LRU or LFU replacement strategy.
Future work will investigate composing the MMU with the CPU and other chips to form a complete

bardware base.

6.1 FUTURE WORK

One of the group’s goals is to specify a set of chips that can work together as a system. The rela-
tionships between an MMU, an interrupt controller, a DMA controller, a memory, coprocessor chips
(floating point processor), and the CPU were examined and several potential system integration

problems were uncovered.

Further research will also examine how a set of processor specifications can be connected
to create a system. A difficulty in composing independent processors occurs when they share
state (e.g., memory, peripheral control registers). The proofs for each device make (legitimate)
assumptions about the effects of device operations. These assumptions simplify the device proof
but assume complete control over (now shared) state. We have defined some of the composition

problems and are developing an interaction model based on a noninterference requirement.
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APPENDIX A: BITVECTOR THEORY

systea ‘rm bitVector.th‘;;

sev_theory ‘bitVector‘;:

let ARB = nev_definition
(‘ARB‘, "ARB = @ (x:bool) . F");;

let ZEROES = new_definition
(*ZEROES®,
*1 (w:pum) (m:num) .
ZEROES w m = (m <= w) => F | ARB");;

let ABS = pev_definition
(‘aBS‘,
*ABS (v:pum) (sig:num->num->bool) (t:num) (n:num)
=n<¢syw= signt | ARB");;

let DYPART = nev_definition
(‘byPART’,
*byPART max min (sig:num=->bool) (n:num)
= (n>max) ® F |
(n < min) => F |
sign ")is

lat byvEQbLit = new_definition
(‘bvEQbit_DEF‘,
"byEQbit x a b = a x = (b (x:pum)):bool”
)i

let BvEQUAL = nev_prim_rec_definition
(‘byEQUAL_DEF*,
“(bvEQUALO a b = (a 0 = (b 0):bool)) /\
(bvEQUAL (SUC n) a b = (bvEQUALn a b /\ (a (SUC n) = (b (SUC m)))))"
)is

let BvGREATER = new_prim_rec_definition
(*bvGREATER_DEF',
"(byGREATER O a b= (a 0 /\ b0 ) ) /\
(bvGREATER (SUC n) a b =
¢ C a(suc n)/\"b(suC n) ) \/
( (a(SUC n)=b(SUC n)) /\ byGREATER n a b)
nn
)is

let DVLESS = new_definition
(*bvLESS_DEF‘,
"byLESS n a b = byGREATER n b 2"
)i

let byPartEQUAL = nev_prim_rec_definition
(‘byPartEQUAL_DEF*,
»(byPartEQUALO y a b =
((y=0) = (bvEQbit 0 a b) | F ) /\
(byPartEQUAL (SUC x) ya b =
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(
((SUC x) > y) => (bvEQbit (SUC x) a b /\ (bvPartEQUAL x y a b)) |
((SUC x) = y) => (byEQbit (SUC x) a b) | F

) ) M X

let bvPartGREATER = new_prim_rec_definition
(‘bvPartGREATER_DEF',
*(bvPartGREATER (SUC x) ya b =
(
((suc x) > y) =
¢ ( a(SUC x)/\"B(SUC x) ) \/
((a(SUC x)=b(SUC x)) /\ bYPartGREATER x y a b) ) |
((SUC x) = y) => (a(SUC x)/\"b(SUC x)) | F
) S L H

let byPartLESS = nev_definition
(‘byPartLESS_DEF',
“byPartlLESS x y a b = byPartGREATER x ¥ b a"
)ss

close_theory();;



APPENDIX B: COMPARISON UNITS

loadf ‘exist.tac.ml‘;;

systea ‘rn comparer.th;;

nev_theory ‘comparer‘;;

map load_parent [‘gates‘; ‘bitVector‘];;

let bitComp_spec = new_definition
(‘bitComp_spec’,
"t first sec g 1 ¢ . bitComp_spec first sec g le=
(g = ( tirst /\ “sec)) /\
@ = ( “tirst /\ sec)) /\
(e = ( tirst = sec ))"

)i

let bitComp_imp = nev_definition
(‘bitComp_imp*,
"} first sec g 1 ¢ . bitComp_imp first sec gl ¢ =
?p q . (inv first p) /\ (inv sec q) /\
(nor2 p sec  g) /\
(nor2 q tirst 1) /\
(nor2 gl e "
)i

let bitComp_correct = prove_tha
(‘bitComp_correct’,
"y first sec g 1 .
bitComp_imp first sec g 1 e« = bitComp_spec first sec g 1 @¢",
REVRITE_TAC [ bitComp_imp; bitComp_spec; nor2; inv ]
THEE REPEAT GEN_TAC
THEN EXISTS_ELIM_TAC
THEN REVRITE_TAC [DE_MORGAN_THM]
THEN REVRITE_TAC [SPECL ["sec"; “~first"] CONJ_SYM]
THER EQ_TAC
THER STRIP_TAC
THER ASM_REWRITE_TAC O
THEN MAP_EVERY BOOL_CASES_TAC ["first:bool"; “gec:bool"]
THEE REVRITE_TAC 00
)i

X
bitComp_correct =
|- itirst sec g 1 @.

bitComp_inp first sec g 1 e = bitComp_spec tirst sec gl o
Run time: 35.5s
Intermediate theorems generated: 3470
%

let compComb_spec = nev_definition
(‘compConb_spec’,
" g0gl1l01lle0eligle. compComb_spec g0 g1 10 11 ¢0 el gl e =
(g = (g1 \/ (e1 /\ g0 /\
Q= Q1\ (e1 /A1) /N
(e = (o1 /\ eO))"
}is
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let compCoab_imp = nev_definition
(‘compComb_imp*,
"1 g0 gl 1011 ¢0 e1 gl e . compComb_imp g0 g1 10 11 e0 el gl e =
7pq. (and2_imp e1 g0 p) /\ (or2_imp g1 p g) /\
(and2_imp e1 10 q) /\ (or2_imp 11 q 1) /\
(and2_imp e¢1 ¢0 @) "
)i

let compComb_correct = prove_tha

(‘coapComdb_correct*,

“f g0 g1 10 11 @0 e1 g 1 o. compComb_imp g0 g1 10 11 €0 ¢1 gl @ =
conpComb_spec g0 g1 10 11 ¢0 ¢1 g 1 o",

REVRITE_TAC [ compComb_imp; compComb_spec; and2_correct; or2_correct]

THEN REVRITE_TAC [ and2_spec; or2_spec ]

THE¥ REPEAT GEB_TAC

THEEX EXISTS_ELIN_TAC

THER PURE_ONCE_REWRITE_TAC

[SPECL [ "(1 =11 \/ a1 /A 10)" ; "(g = g1 \/ &1 /\ g0)" ] cONI_SYM]

THEN PURE_ONCE_REVRITE_TAC [ SPECL [ "(e = @0 /\ o1)" ] CORJ_SYN]

THEF REVRITE_TAC [ CONJ_ASSOC ]

)i

X
compComb_correct =
|- 1g0g11011 a0 01 g 1.
conpComd_imp g0 g1 10 11 ¢0 el g 1l @ =
conpConb_spec g0 g1 10 11 e0 el g 1 @
Run time: 25.9s
Intermediate theorems generated: 2385

let comp_spec = nev_definition
(‘comp_spec’,
""tnabgle.
comp_specnabgles=
(g = ( byGREATER n a b) ) /\
(1= (bvLESSn abd) ) /\
( e= ( byEQUAL n a b) )"
)ik

let comp_imp = new_prim_rec_definition
(‘comp.imp‘,
“(comp_imp 0 a b gr 1s eq = (bitComp_imp (a 0) (b 0) gr ls eq))/\
(comp_imp (SUC n) abgrlseq=
?galaemgnlnen.
(comp_imp n a b gn 1n en) /\
(bitComp_imp (a (SUC n)) (b (SUC n)) g 1m em) /\
(compComb_imp gn gn 1n 1» en em gr 1s ¢q)
)ﬂ
)i

let compare_correct = prove_tha
(‘compare_correct’,
"in a b great less equ.
comp_imp n a b great less equ = comp_spec n a b great less equ”,
INDUCT_TAC
TEER REPEAT GEN_TAC
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THES REVRITE_TAC[comp_imp;comp_spec]
THEEL

{X base case %
REVRITE_TAC[bitComp_correct; bitComp_spec;
byGREATER_DEF ; bvLESS_DEF ; bvEQUAL_DEF]
THEN EQ_TAC THEN STRIP_TAC THEN ASM_REVRITE_TAC (8]
THEN PURE_ONCE_REVRITE_TAC [ SPECL [ "~a 0" ] CONJ_SYN]
THEN REVRITE_TAC O
;% induction %
REVRITE_TAC [comp_inp)
THEN ASK_REVRITE_TACO
THEN REWRITE_TAC[bitComp_correct;compCoab_correct;
comp_spec; bitComp_spec; compComb_spec]
THES EXISTS_ELIM_TAC
THER REVRITE_TAC [bvGREATER_DEF;bvLESS_DEF; bvEQUAL_DEF]
THEN EQ_TAC TEEN STRIP_TAC TEEN ASK_REVRITE_TAC 0O
THEN PURE_ONCE_REWRITE_TAC [ SPECL [ "~a(sucC n)" ] coxJ_svd
THES PURE_ONCE_REWRITE_TAC [ SPECL [ "bvEQUAL n a b" } coni_smd
TEES REWRITE_TAC [] TEEN EQ_TAC THEN STRIP_TAC
THEN ASM_REWRITE_TAC D
s

%

COIP&I’._COI‘T.C‘ -

‘n a b great less equ.
comp_imp n a b great less equ = CORp_Spec n 2 b great less equ

Run time: 163.7s
Garbage collection time: 97.6s
Intermediate theorems generated: 13399

let bitEq_spec = new_definition

(

)

‘bitEq_spec’,
“i first sec e . bitEq spec first sec ¢ =
(e = ( (irst:bool) = sec ))"

.o
’

let bitEq_imp = new_definition

(

‘bitEq_imp*,
"t first sec @ . bitEq_imp first sec e =
7i3j . (nor2 tirst sec i) /\
(and2_imp first sec j) /\
(or2_imp i j @ "
)is

let bitEq_correct = prove_tha

(‘bitEq_correct’,
"1 first sec e.

bitEq imp first sec e = bitEq_spec first sec o",

)i

REVRITE_TAC [ bitEq_imp; bitEq_spec; or2_correct;

nor2; and2_cerrect; inv; or2_spec; and2_spec]
THEN REPEAT GEN_TAC
THEE EXISTS_ELIM_TAC
TEEN MAP_EVERY BOOL_CASES_TAC ["first:bool"; "sec:bool"]
THEE REWRITE_TAC O
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bitEq_correct =

}- 1first sec e. bitEq imp first sec ¢ = bitEq_spec first sec @
Run time: 15.3s

Intermediate theorems generated: 1251

X

let compEq_spec = nes_definition
(‘compEq_spec’,
“"tanabe.
compEq_spec n a b e =
(es= (LVEQUALRD a b) )"
P H]

let compEq_imp = new_prim_rec_definition
(‘compEq_imp‘,
*(compEq.imp O a b eq = (bitEq_imp (a 0) (b 0) eq))/\
(compEq_imp (SUC 1) a b eq =
Tenen.
(compEq_imp n a b en) N\
{bitEq_imp (a (SUC n)) (b (SUC n)) em) /\
(and2_imp en em ¢q)
)ll
)i

let compEq_correct = prove_thm

(‘compEq_correct’,
"!nabae. compEq_impn a b & = compEq_spec n a b ¢",
INDUCT_TAC
THEN REPEAT GEN_TAC
THER ASM_REWRITE_TAC[compEq_imp;compEq_spec;bvEQUAL_DEF; and2_imp;

bitEq_correct; bitEq_spec; inv; nand2 ]

THEN EXISTS_ELIM_TAC
THEN PURE_ONCE_REWRITE_TAC [ SPECL { "bvEQUAL n a b" ] CONJ_SYM]
THEN REVRITE_TAC O

)is

%
compEq_correct = |- !n a b e. compEq_impn a b ¢ = compEq_spec na b e
Run time: 22.1s

Intermediate theorems generated: 1796

close_theory();;
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APPENDIX C: PAGECHECK UNITS

systes ‘ra pgCk.th';;

loadf ‘exist.tac.ml';;

nev_theory ‘pgCk‘;;

map load_parent [‘gates’;‘bitVector‘;‘comparer';‘register‘];;

let bitFalse » new _definition
(‘bitFalse‘, "!t . bitFalse t = F");;

PECk specifies a (register/ack) pair for a (n/address/vriteDp/register)
input tuple

let pgCk = nev_definition
(‘pgCk‘, "!rgstr address write n. pgCk n address write rgstr =

((vrite = T) => (address, T:bool) |

(bvEQUAL n rgstr address) => (rgstr, T) |
(rgstr, F)

DA P

let pgCk_spec = nev_definition
(‘pgCk_spec’,
"t(reg addr :num->num->bool) (r¥C ack :num->bool) (n:nuam).
PECk_spec n addr r¥WC reg ack =
t(t:nun). (reg(t+1), ack(t+1)) =
peCk n (addr t) (r¥C t) (reg t)" );:

let pgCk_imp = nev_definition
(‘pgCk_imp‘,
"ireg addr r¥C n ack. pgCk_imp n addr r¥C reg ack =

’'"®t.
(g 1 e.
(reg_imp n addr r¥C bitFalse reg ) /\
(comp_imp n (ABS n reg t) (ABS n addr t) g 1 e) /A
(or2_imp ¢ (r¥C t) (ack (t+1)) )
)u

)i

let pgCk_correct = prove_tha

(‘pgCk_correct’,

"ireg addr r¥C n ack . pgCk_imp n addr r¥WC reg ack =>
pgCk_spec n (ABS n addr) r¥WC (ABS n reg) ack",

REPEAT GEN_TAC

THEN REVRITE_TAC [ pgCk_imp; pgCk.spec; pgCk ]

THEN REWRITE_TAC [ compare_correct; reg_correct ; or2_correct )

THEN REWRITE_TAC [ reg_spec; comp_spec; or2_spec]

THEN REVRITE_TAC [ bitFalse ]

THER EXISTS_ELIM_TAC

THEN STRIP_TAC

THEN GEN_TAC

THEN ASM_CASES_TAC "(r¥WC t):bool"”

THEN ASM_REWRITE_TAC [

THEN ASM_CASES_TAC "(bvEQUAL n(ABS n reg t)(ABS n addr t)):bool"
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TEEN ASM_REVRITE_TACO
)i

§{~———e—eee—e=-JO¥ add a supervisor line---=-——===y

let pgCka_spec = nev_definition
(‘pgCka_spec’,
"1 (reg addr :nus->num->bool) (sup r¥C ack :num->bool) (n:num).
pgCa_spec n addr rC sup reg ack =
t(t:numn). (reg(t+1), ack(t+1)) =
PECk n (addr t) (rWC t /\ sup t) (reg t)" )i;

let pgCha_inp = nev_definition
(‘pgCa_imp‘,
“treg addr r¥C sup n ack. pgCka_imp n addr rWC sup reg ack =

1t.

(*xgle.

(and2_imp (z¥C t) (sup t) (x t) ) /\

(reg_imp n addr x bitFalse reg ) /\

(comp_imp n (ABS n reg t) (ABS n addr t) g 1 &) /\
(or2_imp & (x t) (ack (t+1)) )
L FHS

let pgCka_correct = prove_tha
(‘pgCha_correct’,
“treg addr r¥C sup n ack . pgCka_imp n addr rWC sup reg ack ==>
pgCka_spec n (ABS n addr) rUC sup (ABS n reg) ack”" ,
REPEAT GEN_TAC
TEEN OBCE_REWRITE_TAC [ pgCka_imp; pgCka_spec ]
THES ONCE_REVRITE_TAC [pgCk ]
THER ONCE_REWRITE_TAC
[ compare_correct; reg_correct ; or2_correct; and2_correct ]
THEN ONCE_REWRITE_TAC [ reg._spec; comp_spec; or2_spec; and2_spec]
THEN REVRITE_TAC [ bitFalse ]
THEN EXISTS_ELIM_TAC
THEN REPEAT STRIP_TAC
TEEE POP_ASSUM(\thm. STRIP_ASSUME_TAC (SPEC_ALL thm))
TEEN ASSUM_LIST(\asl. REWRITE_TAC
[(REVRITE_RULE [el 2 asl] (el 3 asl))])
THER MAP_EVERY ASM_CASES_TAC [ "(r¥C t):bool"; "(sup t):bool"]
THEN ASSUM_LIST(\thl. ASSUME_TAC (REWRITE_RULE [
(REVRITE_RULE [(el 1 thl); (el 2 thl)] (el 4 thl) ) ] (el 5 thl) ))
THEN ASM_REWRITE_TAC [J
THEN ASM_CASES_TAC "(bvEQUAL n(ABS n reg t)(ABS n addr t)):bool"
THEN ASM_REWRITE_TACO
)3



APPENDIX D: BASE AND BOUNDS CHECK UNIT

systen ‘ym mmu.th’;;

loadf ‘exist.tac.ml’;;

nev_theory ‘mmu‘;;

map load_parent [‘gates’;‘bitVector’;‘comparer’; ‘register‘l;;

let bitFalse = nev_definition
(‘bitFalse‘, "!t . bitFalse t = F");;

]
baseBounds MMU
input :
addr, offset, data, supervisor state, read/srite request,
ADDR of register
s: defines number of bits defining segment size

output:
ack
internal state:
baseBounds register

let BLSUPERV = nev_definition
(‘DbSUPERV®,
=1 (bbReg addr data :num->bool)
(ADDR :num->bool) (rw:bool) (n:num).
BLSUPERV n bbReg addr data ADDR rv =
( rv => ((bvEQUAL n addr ADDR) => (data, T:bool) | (bbReg, T) )
(bbReg, T} )" ¥

let BLCOMP = nes_definition
(‘vbCoNP‘,
*!1bbReg addr n s.
PLCOMP n s bbReg addr =
( (bvEQUAL n (bvPART n e bbReg) (bvyPART n s addr) /\ “(bvGREATER s addr bbReg) )
=> (bbReg, T:bool) | (bbReg, F))");;

let bbEextState = nev_definition
(‘bbNextState’,
1 (bbReg addr data :num->bool)
(ADDR :num->bool) (super rv ack :bool) (n s :num).
bbNextState n s bbReg addr data ADDR super rv =
( super => bbSUPERV n bbReg addr data ADDR rv |
bbCOMP n s bbReg addr )" )i

let baseBoundCk_spec = new_definition
(‘baseBoundCk_spec’,
"1 (bbReg addr data :num->num->bool) (ADDR :num->bool)
(super rv ack :num->bool) (n s:num).
baseBoundCk_spec n s bbReg addr data ADDR super rv ack =
(s < n) ==>
1. ( bbReg(t+1),ack(t+1) ) =
bblextState n s (bbReg t) (addr t) (data t) ADDR (super 1) (re t)™);;



let PRT = nev_definition
(‘PRT*,
“PRT w max min (sig:num->nun->bool) (t:num) (n:num)
= (n>max) ®F|
(p <min) = F |
(aes w) = (aignt) | ARB ");:

let baseBoundCk_imp = nevw_definition
('baseBoundCk_imp*,
" ! (bbReg addr data :nus->mum->bool) (ADDR :num->bool)
(super rv ack :pum->bool) (n s:nua).
baseBoundCk_imp n s bbReg addr data ADDR super rv ack =
(s < n) => "re.
C7 writeBB g0 g1 g2 10 11 12 2 x addrMatch goodSeg goodDfs ok.
(reg_imp n data writeBB bitFalse bbReg) /\
(comp_imp m (ABS n addr t) ADDR g0 10 (addrMatch t)) /\
(and2_imp (xv t) (super t) (x t)) /\
(and2_isp (addrMatch t) (x t) (writeBB t)) /\
(comp_imp n (PRT n n s bbReg t)
(PRTn n s addr t) g1 11 goodSeg) /\
(comp_imp s (ABS n addr t)
(ABS n bbReg t) g2 12 e2) /\
(inv g2 goodDfs) /\
(and2_imp goodOfs goodSeg ok) /\
(or2_imp ok (super t) (ack (t+1)) )
L) H

X prove sone lemmas %

let xaulemna0 = prove_tha
(‘smulesmal‘,
“t(a s t:pum) (sig:num->num->bool). (s < n) ==>
((PAT a m s sig t) = (bvPART n s(ABS n sig t) ) )",
INDOCT_TAC
THEN REPEAT GEN_TAC
THES REVRITE_TAC [NOT_LESS_0]
THEN STRIP_TAC
THER CONV_TAC(DEPTH_CONV FUK_EQ_CONV)
THEN GEN_TAC
THEN REVRITE_TAC (PRT;bvPART;4BS]
)i

let mamlesmal = prove_thm
(‘msulemmal’,
» (beEQUAL n(bvPART n s(ABS n bbReg t)) (bvPART n s(ABS n addr t)) /\
“bwGREATER s(ABS n addr t) (ABS n bbReg t)) =
(“bYGREATER s(ABS n addr t) (ABS n bbReg t)) /\
(bvEQUAL n(bwPART n s(ABS n bbReg t)) (bvPART n s(ABS n addr t)))*,
ONCE_REVRITE_TAC [
SPEC "~bvGREATER s(ABS n addr t)(ABS n bbReg t)" CONJ_STM]
THEN REFL_TAC
}is

let mmulenna2 = prove_tha
(‘amulemma?‘,
"y (m:pum). (m > 0 ) ==> { ((SUC (PRE n) -1) + 1 = (SUC(PRE n)) )",
GEN_TAC
THER ASK_CASES_TAC "n>0"
THEN ASM_REVRITE_TAC D
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THEN REVRITE_TAC [SUC_SUB1)

THEN REVRITE_TAC [num_COEV "1"]

TEEX REWRITE_TAC [ADD_CLAUSES]
)i

let maulemna3 = prove_tha
(‘smuleama3’,
") (n:pum). (0 > 0 ) ==> ( (SUC (PRE D)) = n »”,
GEN_TAC
THEN ASM_CASES_TAC "n>0"
THEN ASM_REVRITE.TAC O
THEE REWRITE_TAC [PRE_SUB1;ADD1]
THEN REWRITE_TAC [num_CONY "1"]
THEN POP_ASSUM(\thm. ASSUME_TAC
(REVRITE_RULE [tha] (SPECL ["n"; "0"] GREATER) ))
TBEN POP_ASSUM(\thm. ASSUME_TAC
(REVRITE_RULE [thm) (SPECL ["0"; "n"] LESS_EQ) ))
THEN POP_ASSUM(\thm. REWVRITE_TAC [
(REVAITE_RULE [thm] (SPECL [“n";"(SUC 0)"] SUB_ADD) )1)
)

% prove baseBoundCk_correct %

let baseBoundCk_correct = prove_tha
(‘baseBoundCk_correct’,
#1(bbReg addr data :num->num->bool) (ADDR :num->bool)
(super rv ack :num->bool) (n s:num).
baseBoundCk_imp n s bbReg addr data ADDR super rv ack ==>
baseBoundCk_spec n s (ABS n bbReg) (ABS n addr) (ABS n data)
ADDR super rw ack",
REVRITE_TAC [baseBoundCk_imp; baseBoundCk_spec]
THEE REPEAT GEN_TAC
TEEN ASM_CASES_TAC "(s < n)"
THEN ASM_REVRITE_TAC []
THEN ONCE_REVRITE_TAC [bbNextState]
THEN ONCE_REWRITE_TAC [bbSUPERV; bLCOMP]
THEN ONCE_REWRITE_TAC
[and2_correct; reg_correct; compare_correct; or2_correct; inv]
THEN ONCE_REWRITE_TAC [and2_spec; or2_spec; reg_spec; comp_spec]
TEEN REVRITE_TAC [ bitFalse ]
THEN EXISTS_ELIK_TAC
THEN REPEAT STRIP_TAC
THEN POP_ASSUM(\thm. STRIP_ASSUME_TAC (SPEC_ALL tha))
THEN MAP_EVERY ASM_CASES_TAC [ "(rw t):bool"; "(super t):bool"]
THESL [
%1/4 %
ASM_CASES_TAC "bvEQUAL n(ABS n addr t)ADDR"
THEN ASM_REWRITE_TAC O
i1 2/4%
ALL_TAC
X 3/4 %
ASSUN_LIST(\asl. REVRITE_TAC [ (el 1 asl); (el 2 asl)] )
THEN ASSUM_LIST(\thl. ASSUME_TAC (REWRITE_RULE ((el 1 thl)] (el § thl) ))
THEN ASSUM_LIST(\thl. ASSUME_TAC (REVRITE_RULE [(el 3 th1)] (el § thl) ))
THEN ASSUM_LIST(\thl. ASSUME_TAC
(REVRITE_RULE [(el 1 thl)] (SPEC "t" (el 5 thl)) ))
THEN ASSUM_LIST(\thl. REWRITE_TAC [Cel 1 thl) ; (el 3 th1)] )
X 4/4 %
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ALL_TAC
]} % cases 2 and 4 remain ¥
THEN REVRITE_TAC [mmulemmai}
THEN ASSUM_LIST(\asl. REVRITE_TAC [ (el 1 asl); (el 2 asl)] )
THES ASSUM_LIST(\thl. ASSUME_TAC (REWRITE_RULE [(el 1 thl)] (el § thl) ))
THEE ASSUM_LIST(\thl. ASSUME_TAC (REWRITE_RULE [(el 2 thl)] (el § thl) )})
THEN ASSUM_LIST(\thl. ASSUME_TAC
(REVRITE_RULE [(el 1 thl)] (SPEC "t" (el 5 thl)) ))
THEN ASSUM_LIST(\thl. ASSUME_TAC
(REVRITE_RULE [(el 10 thl)] (SPECL ["n";:"s";"t"] mmulemma0) ))
THEN ASSUM_LIST(\thl. ASSUME_TAC (REVRITE_RULE [(el 1 thl)] (el 4 thl) ))
THEN ASM_CASES_TAC "ack(t+1):bool"
THEN ASSUM_LIST(\thl. REVRITE_TAC [(el 1 thl) ; (el 4 thl);
(REVRITE_RULE [(el 1 thl)] (el 2 thl)) ] )
dis

%

baseBoundCk_correct =
|- IbbReg addr data ADDR super rv ack n s.
baseboundck_imp n s bbreg addr data addr super rv ack ==>
baseboundck_spec
.
s
(abs n bbreg)
(abs n addr)
(abs n data)
addr
super
v
ack
run time: 492.7s
garbage collection time: 347.8s
intersediate theorems generated: 31227




APPENDIX E: VIRTUAL ADDRESS TRANSLATION UNIT

set_flag(‘print_all_subgoals‘, false);;

systea ‘T mmu.th';;

loadf ‘exist.tac.ml';;

nev_theory ‘mmu‘;;

map load_parent [‘gates’;‘bitVector‘;‘comparer‘; ‘register‘];;

let bitFalse = pev_definition
(‘bitFalse’, "it . bitFalse t = F");;

%
baseBounds KMU with virtual address translation

let VSUPERYV = nev_definition
(‘vSUPERV',
“{(bbReg vaReg addr data :num->bool)
(ADDR :nmum->bool) (rw:bool) (n:num).
¥YSUPERV n bbReg vaReg addr data ADDR rv =
( (rv /\ (bvEQUAL n (bvPART n 1 addr) (bvPART n 1 ADDR) ))
=> (addr 0) => (data, vaReg, addr, T:bool) |
(bbReg, data, addr, T:ibool) |
(bbReg, vaReg, addr, T) )" )is

let VtoR = nev_definition
(‘VtoR',
“VtoR reald virtA s n
= (n>s) => (reald m):bool |
(virtd n)" )i

let vCOMP = new_definition
(‘vCOMP*,
"1bbReg vaReg addr n s.
vCOMP n s bbReg vaReg addr =
( (bvEQUAL n (bvPART n s bbReg) (bvPART n s addr) /\
“(bvGREATER s addr bbReg) )
=> (bbReg, vaReg, (VtoR vaReg addr s), T:bool) |
(bbReg, vaReg, addr, F))");;

let vNextState = nev_definition
(‘vNextState’,
» 1 (bbReg vaReg addr data :num->bool)
(ADDR :num->bool) (super rv ack :bool) (n s :pum).
vEextState n s bbReg vaReg addr data ADDR super rv =
( super => vSUPERV n bbReg vaReg addr data ADDR rv |
vCOMP n s bbReg vaReg addr )" )is

let virtBBCk_spec = new_definition
(‘virtBBCk_spec’,
» i (bbReg vaReg addr data outdddr :num->num=->bool) (ADDR :num->bool)
(super rv ack :num->bool) (n s:nums).
virtBBCk_spec n s bbReg vaReg addr data ADDR super rv ack outAddr=
(s < n) ==>
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tt. ( bbReg(t+1),vaReg(t+1), outAddr(t+1), ack(t+1) ) =
vEextState n s (bbReg t) (vaReg t) (addr t) (data t)
ADDR (super t) (rw t)");;

let PRT = nev_definition
(‘PRT',
#PRT v maz min (sig:num->num->bool) (t:num) (n:num)
= (n>mnax) = F |
(o < ain) => F |
(n<= w) »> (signt) | ARB ");;

let PRTA = nev_definition
(‘PRTA',
"PRTA v max min (sig:num->bocl) (n:pum)
= (o> max) = F |
(n <min) => F |
(n<= vw) »> (sign) | 4ARB ");;

let pick_imp = nev_definition
(‘'pick_imp*,
“pick_imp (wordA :num->bool) (wordB :mum->bool) (shich:bool) res
s (which = T) => (res = wordA) | (res = wordB)");;

let virtBBCk_imp = nev_definition
(‘virtBBCk_imp*,
"1 (bbReg vaReg addr data outAddr :num->nus->bool) (ADDR :num->bool)
(super rv ack :num->bool) (n s:num).
virtBBCk_imp n s bbReg vaReg addr data ADDR super rv ack outidddr=
(s < n) ==> it.
(? wBB wVA select x aMO aM1 aM? goodSeg good0fs ok nok nxlat g 1 e.
(and2_imp (xv t) (super t) (x %)) /\
(compEq_imp n (PRT n n 1 addr t) (PRTA n n 1 ADDR) (aMO t) A\
(and2_imp (aMO t) (x t) (aM1 t)) /\
(inv (addr 0 t) (aM2 t) ) /\
(and2_ixp (aM1 t) (addr 0 t) (wBB t)) /\
(and2_imp (aMi t) (aM2 t)  (sVA £)) /\
(reg_imp n data wBB bitFalse bbReg) /\
(reg_imp n data wVA bitFalse vaReg) /\
(compEq_imp n (PRT n n & bbReg t)
(PRT n n s addr t) goodSeg) /\
(comp_imp 8 (ABS n addr t)
(ABS n bbReg t) g1 e) /\
(inv g goodOfs) /\
(and2_imp good0fs goodSeg ok) /\
(or2_imp ok (super t) (ack (t+1)) ) /\
(inv ok nok ) /\
(or2_imp nok (super t) nxlat) /\
(pick_imp (ABS n addr t) (ABS n vaReg t) nxlat (select t)) /\
( (outhddr (t+1))= (VtoR (select t) (ABS n addr t) s ) )
VA FH

% -prove some lemmas %

let mnulemma0 = prove_ths
(‘msulesmal’,
"i(n s t:num) (sig:num->num->bool).
(PRT n n s sig t) = (bvPART n s(ABS n sig t) )",
CONV_TAC(DEPTH_CONV FUB_EQ_CONV)
THEN GEN_TAC

56



THER REVRITE_TAC [PRT;bvPART;ABS)
)is

let maulemnal = prove_thm
‘axuleamal’,
» (bvEQUAL n(bvPART n s(ABS n bbReg £)) (byPART n s(ABS n addr t)) /\
~bvGREATER s(ABS n addr t)(ABS n bbReg t)) =
("bvGREATER s (ABS n addr t)(ABS n bbReg t)) /\
(bvEQUAL n(bvPART n s(ABS n bbReg t)) (bvPART n s(4BS n addr t}))",
ONCE_REWRITE_TAC [
SPEC "“bvGREATER s (ABS n addr t)(ABS n bbReg t)" coxJ_snQ
THEN REFL_TAC
)i

let mmulemma2 = prove_thm
(‘smulemma2’,
"VticRaas =a",
CONV_TAC(DEPTH_CORV FUN_EQ_CONV)
THEN REWRITE_TAC [VtoR]
THEN GEN_TAC
THEN BOOL_CASES_TAC "n > 8"
THEN REWRITE_TAC O

) FH

let mmulemna3 = prove_thm
(‘mmulenma3‘,

“i(n s :pum) (sig:num->bool). (PRTA n n s sig) = (bvPART n 8 sig)",

CONV_TAC (DEPTE_CONV FUN_EQ_CONV)
THES REPEAT GEN_TAC
THEN REWRITE_TAC [PRTA;bvPART]
THEN ASM_CASES_TAC "(n’ > n)"
THEN ASM_REWRITE_TAC O
THEE ASSUM_LIST(\asl. ASSUME_TAC(
REVRITE_RULE [ (SPECL ["n’";"n"] GREATER) ] (el 1 asl) ))
THEN ASSUM_LIST(\asl. REWRITE_TAC[
REWRITE_RULE [ (el 1 asl) ] (SPECL ["n";"n’"] LESS_CASES) ])
)is

let mnulennad = prove_tha

(‘mmulemmad’,

naddr 0 t = ABS n addr t 0",

DNCE_REWRITE_TAC [ABS]

THEN ONCE_REWRITE_TAC [SPECL["0";"n"] LESS_OR_EQ)

THEN REWRITE_TAC [

REWRITE_RULE[SPEC "(O=n)" DISJ_SYM] (SPECL["n"] LESS_0_CASES))

)i

% prove correct %

let virtBB_correct = prove_thm
('virtBB_correct’,
»)(bbReg vaReg addr data outAddr :num->num->bool) (ADDR :num->bool)
(super rv ack :num->bool) (n s:num).

virtBBCk_imp n s bbReg vaReg addr data ADDR super rv ack outAddr ==>

virtBBCk_spec n s (ABS n bbReg) (ABS n vaReg) (ABS n addr)
(ABS n data) ADDR super rv ack outdddr",

REVRITE_TAC [virtBBCk_imp; virtBBCk_spec]

THEN REPEAT GEN_TAC

THEN ASM_CASES_TAC "(s < n)"
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THEN ASM_REVRITE_TAC O
THEN ONCE_REWRITE_TAC [vNextState]
THEN ONCE_REWRITE_TAC [vSUPERV; vCOMP)
THEN ONCE_REWRITE_TAC
[and2_correct; reg_correct; compare_correct;
compEq_correct; or2_correct; inv]
TEEN ONCE_REVRITE_TAC [and2_spec; or2_spec; reg_spec;
comp_spec; compEq_spec; pick_imp)
THEE REWRITE_TAC [ bitFalse ]
THES EXISTS_ELIM_TAC
THEN REPEAT STRIP_TAC
TEEE POP_ASSUM(\thm. ASSUME_TAC (SPEC_ALL thm))
THEN MAP_EVERY ASM_CASES_TAC ["(super t):bool"; "(rw t):bool"]
THEB ASSUM_LIST(\asl. STRIP_ASSUME_TAC
(REVRITE_RULE [(el 1 asl);(el 2 asl)] (el 3 asl)))
TEER POP_ASSUM_LIST(\asl.
MAP_EVERY ASSUME_TAC(rev( subtract asl[(el 12 asl)])))
THESL
{ % 1/4 (super t) (xv t) %
ASSUM_LIST(\asl.
REWRITE_TAC ([(el 6 asl);(el 10 asl);(el 11 asl)] )
THEN ASM_CASES_TAC "bvEQUAL n(PRT n n 1 addr t)(PRTA n n 1 ADDR)"
THEN ASSUM_LIST(\thl. REWRITE_TAC [ REWRITE_RULE
[(SPECL ["n";"1";"ADDR"] mmulLemmal);
(SPECL ["n";"1";"t";"addr"] mmulemma0)] (el 1 thl) 1)
THEN ASSUM_LIST(\thl. ASSUME_TAC
(REVRITE_RULE [mmuLemma2; (el 2 thl)] (el 8 thl)))
THEEL [
ASK_CASES_TAC "(addr 0 t):bool”
THEN ASSUM_LIST(\thl. ASSUME_TAC (REWRITE_RULE
[(REWRITE_RULE [(el 1 thl);(el 3 thl)] (el 7 thl) )]
(SPEC "t" (el 5 thl)) ))
THEB ASSUM_LIST(\asl. REWRITE_TAC
CREVRITE_RULE {mmulemmad4] (el 2 asl)] )
THEN ASSUM_LIST(\thl. ASSUME_TAC (REVRITE_RULE
[(REWRITE_RULE [(el 2 thl);(el 4 thl)] (el 9 thl) )]
(SPEC "t" (el 7 thl)) ))
THEE ASSUM_LIST(\thl. REWRITE_TAC
[PAIR_EQ; (el 1 thl); (el 2 thl); (el 4 thl)])
ASSUM_LIST(\thl. ASSUME_TAC (REWRITE_RULE
[(REWRITE_RULE [(el 2 th1);(el 3 thl)] (el 7 thl) )]
(SPEC "t" (el S thl)) ))
THEN ASSUM_LIST(\thl. ASSUME_TAC (REWRITE_RULE
[(REVRITE_RULE [(el 3 thl);(el 4 thl)] (el 7 thl) )]
(SPEC "t" (el 5 thl)) ))
TREN ASSUM_LIST(\thl. REWRITE_TAC
[PAIR_EQ: (el 1 thl);(el 2 thl); (el 3 th1)])
]
: X 2/4 super t /\ “rv t %
ASN_REVRITE_TAC [xmulemma?]
: 13/4 “supert/\ rvtl
ALL_TAC
;% 4/4 “supert /\ ‘rv t X
ALL_TAC
]
THEN ASSUM_LIST(\asl. (REWRITE_TAC [ (el 10 asl); (el 11 asl); mmulemsai;
(REVRITE_RULE [(el 5 asl)] (SPEC "t" (el 3 asl)));
(REWRITE_RULE [(el 4 asl)] (SPEC "t" (el 2 asl}))]))



THEN ASM_CASES_TAC " ("bvGREATER s(ABS n addr t)(ABS n bbReg t)y /\
bvEQUAL n(PRT n n s bbReg t)(PRT n n s addr tH"
THEE ASSUM_LIST(\asl. REWRITE_TAC[ REWRITE_RULE {amuLenna0] (el 1 asl)])
THEN ASSUM_LIST(\asl. REVRITE_TAC[ REVRITE_RULE [(el 1 asl)] (el 7 asl)))
THEN ASSUM_LIST(\asl. REVRITE_TAC { mauLeama2; (REVRITE_RULE
[REVRITE_RULE [(el 1 as1)] (el 2 as1)] (el 8 asl)) 1)
)iz

X
virtBB_correct =
|- tbbReg vaReg addr data outdddr ADDR super Tv ack n 8.
virtBBCk_imp n s bbReg vaReg addr data ADDR super rv ack outdddr ==>
virtBBCk_spec
n

s
(ABS n bbReg)
(ABS n vaReg)
(ABS n addr)
(ABS n data)
ADDR
super
TV
ack
outAddr
Run time: 1209.0s
Garbage collection time: 734.68
Intermediate theorems generated: 64185

close_theory();;

§evwem——eeeee=e—  ¥OTIk space

let mnulemnal = prove_thm
(‘mmulenmal’,
wi(n s t:nun) (sig:nus->num->bool). (s < n) ==>
((PRT n n s sig t) = (bvPART n s(ABS n sig t) )",
INDUCT_TAC
THEN REPEAT GEN_TAC
TEEN REWRITE_TAC [NOT_LESS_0]
THEN STRIP_TAC
THEN CONV_TAC(DEPTH_CONV FUK_EQ._CONV)
THEN GEN_TAC
THEN REWRITE_TAC {PRT;bvPART; ABS)
)i

let msulemma3 = prove_thm
(‘mmuLemnad’,
ni(n s :pum) (sig:pum->bool). (s < m) ==>
((PRTA n n s sig) = (bvPART n s sig) )",
INDUCT_TAC
THEN REPEAT GEN_TAC
THEN REVRITE_TAC [NOT_LESS_0]
THEN STRIP_TAC
THES CONV_TAC(DEPTH_COEV FUN_EQ_CORV)
THER GEN_TAC
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THEN REVRITE_TAC [PRTA;bvPART)
THEN ASM_CASES_TAC "(n’ > (SUC n))"
THER ASM_REVRITE_TAC [J
THEN ASSUM_LIST(\asl. ASSUME_TAC(
REVRITE_RULE [ (SPECL ("n’";"(SUC n)"] GREATER) ] (el 1 asl) ))
THEN ASSUM_LIST(\asl. REVRITE_TAC[
REVRITE RULE [ (el 1 asl) ] (SPECL {"(SUC n)";"n’'"} LESS_CASES) 1)

)iz




APPENDIX F: ABSTRACT MEMORY MANAGEMENT UNIT

mmu._abs.ml

let Lidbrary_Root = ‘lopoch/dl/cngrad/achubcrt/hol/Library/‘:;
let 1lidb dir_list =
(map (concat Library_Root)
[‘gates/‘; ‘bits/';‘words/‘;‘numbers/‘; ‘decimal/‘; ‘assoc/‘]);;
set_search_path (search_path() ¢ [‘.°;
‘/opoch/dl/cogr-d/schubort/hol/tactics/‘;
‘/epoch/d1/csgrad/schubert/hol/nl/‘;
‘/opoch/dt/csgrad/schubcrt/hol/thoorios/‘;
‘ltpoch/dl/cngrud/nchubcrt/hol/li-p/vux/‘:
]

€ 1ib_dir_list);:
loadf (‘aux_defs.nl’);;
systes ‘r» /opoch/d1/cngr:d/nchubcrt/hol/thoorics/llu_abc.th‘:;
nev_theory ‘mmu_abs‘;;
loadf ‘abstract’::

pev_type_abbrev ('RVE‘, ":bool$bool#bool");;

let mmu_abs = nev_abstract_representation

L
(‘segld’, n: (saddress -> svordn)" )i
(‘segDfs’, “:(saddress -> swordn)" )i
(‘segldshf’, v (saddress -> svordn)" )i
1%
(‘availBit‘, »:(swordn => bool)" );
(‘readBit’, v: (syordn -> bool)" )
(‘writeBit‘, ». (ewordn -> bool)" ):
(‘execBit’, »: (swordn => bool)" )i
12
(‘add’, " (sgordn $ evordn ->swordn)" );
3
(‘addrEq‘, n:(saddress & saddress =-> bool)" )i
(‘ofslEqQ‘, n:(saddress & swordn  -> bool)" );
(‘validiccess’, n;(saddress # swordn 8 RVE ~> bool)" );
% Coercion functions %
(‘val‘, n.(svordn -> nua)" );
(‘wordn‘, “:(num-> evordn)" ):
(‘address’, n:(swordn -> saddress)" ):
% Memory functions %
(‘tetch’, #: (smemory # saddress) ~> svordn" ):
(‘trans‘, »:ememory -> *memory” );
) B

let mmu_ty = abstract_type ‘mau_abs‘ ‘segld‘;;

close_theory();;
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mmu._def.ml

let Library_Root = ‘/epoch/d1/csgrad/schubert/hol/Library/‘;;
let 1ib_dir_list =
(map (concat Library_Root)
[‘gates/‘; ‘bits/‘;‘vords/‘;‘numbers/‘; ‘decimal/‘; ‘assoc/‘});;
set_search_path (search path() ¢ [‘.*;
‘ /apoch/d1/csgrad/schubert/hol/tactics/*;
¢ /epoch/d1/csgrad/schubert/hol/ml/‘;
¢ fepoch/d1/csgrad/schubert/hol/theories/ ;
¢ /epoch/d1/csgrad/schubert/hol/lisp/vax/‘;
]
¢ 1ib_dir_list);;
loadf(‘aux_defs.nl‘);;
system ‘rm /epoch/d1/csgrad/schubert/hol/theories/mmu_def.th‘;;
nev_theory ‘mmu_def';;
loadf ‘abstract’;;

map nev_parent [‘mmu_abe‘;‘time_abs'];;

let rep_ty = abstract_type ‘mmu_abs‘ ‘segld’;;

%
type definitions
y 3
nev_type_abbrev (‘RVWE‘,":bocl#boolsbool”);;
let rBIT = new_definition
(‘rBIT',"trve:RWE. rBIT rve = (FST rve)");;
let wBIT = nev_definition
(‘wBIT*,"!rve:RVE. sBIT rve = (FST (SKND rve))");;
let ¢BIT = nev_definition
(‘eBIT,"!rve :RVE. ¢BIT rve = (SND (SND rve))");;
b
Security bit auxiliary definitions
Segaent Descriptor:
n s-1 0
0: |AvaillRead|Vrite|Executel....| Segment Size |
1: | Real Offset {
%
%

MMU SPECIFICATION
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let legaliccess = nev_definition
(‘legalAccess, "!(rve: RVE) viddr tblPtr mea (r:"rep_ty) .
legaliccess r vAddr tblPtr rve mem =
let a = (fetch r){( menm,
(address r)((add r) (segldshf r vAddr,tblPtr) )) in
( (validiccess r) (vAddr,a,rve) /\ (ofslEq r) (vAddr,a))" );;

let vToR = nev_definition
(‘vToR‘,
#jviddr tblPty mem (r:“rep_ty). vToR r viddr tblPir mem =
let a = (fetch r) (mem, (address r)
((add r)( (vordn r 1), (add r)(segldshf r viddr,tblPtr) ))) in
(address r) ((add r) (segDfs r viddr, a)) ")i;

let superiode = nev_definition
(‘superMode’,

“{ ree vAddr tblPtrADDR tblPtr data mem (r: rep_ty).
superMode r viddr rve tb1PtrADDR tblPtr data mem =
((wBIT rve) /\ (addrEq r (vAddr,tblPtrADDR))} )

> ( T, vAddr, data ) |
( T, vhddr, tblPtr )");;
1
let userMode = new_definition
(‘userMode‘,

»1 yye vAddr tb1PtrADDR tblPtr data mem (r: rep_ty).
userMode r vAddr rve tblPtrADDR tblPtr data mem =
((sBIT rwe) /\ (addrEq r (vAddr,tblPtrADDR)) )

=> ( F:bool, vAddr, tblPtr ) |
( legaliccess T vAddr tblPtr rve mes
=> ( T, (vToR r vAddr tblPtr mem), tblPtr ) |
( P, viddr, tblPtr ) )"):;
]

let userMode = nevw_definition
(‘userMode’,
ny rwe vAddr tb1PtrADDR tblPtr data mem (r:“rep.ty).
userMode r vAddr rve tblPtrADDR tblPtr data mea =
( legaliccess r vAddr tblPtr rve mem
a> ( T, (vToR r vAddr tblPtr mem), tblPtr ) |
( F, vAddr, tblPtr ) )™

let nextState = nev_definition
(‘nextState’,
| rve superv viddr tblPtrADDR tblPtr data mes (r:"rep_ty) .
nextState r vAddr rve tblPtrADDR tb1Ptr data mem superv=
(supery => superMode r viddr rve tblPtrADDR tblPtr data mem |
userMode r vAddr rve tblPtrADDR tblPtr data mem )

let mau_beh = nev_definition
(‘mmu_beh’,
nireqIn rve superv viddr tblPtriDDR tblPtrin mes data (r:“rep_ty).
amu_beh r reqln rve viddr superv data meam tblPtrADDR tblPtrin =
4 (reqOut , riddr , tblPtrOut ) = X
reqln => nextState r viddr rve tb1PtrADDR tb1Ptrin data mes superv |
(F:bool, vAddr, tblPtrIn)" i
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let mmu_spec = nev_definition
(‘mmu_spec’,
"1 rve superv vAddr tblPtrADDR tblPtr data mem (r:“rep_ty) .
mau_spec r viddr rve tblPtrADDR tblPtr data mem superve
(superv => suparNode r vAddr rve tblPtrADDR tblPtr data men |
userMode r viddr rve tblPtrADDR tblPtr data mem )" );;

%
MU INPLEMENTATION

let secUnit_spec = nev_definition
(‘secUnit_spec‘,
"1a b ok (r:"rep_ty)(rve:num->RWE). secUnit_spec r a b rve ok =
tt. ok (t+1) =
((validiccess r) ((a t),(b t),(rve t)) /\ (ofslLEq r) ((a t),(b t)))");;

let addUnit_spec = nev_definition
(‘addUnit_spec’, "!(a b ¢ :num->svordn) (r:“rep_ty).
addUnit_spec r a b c = !t:num. ¢ (t+1) = (add r ( (a t),(d ¢) )3

let muxUnit_spec = nev_definition
(‘muxUnit_spec’,
»i(a out:pum->vaddress) (b :num->svordn) (v :num->bool) (r:°rep_ty).
muxUnit_specr a bout v =
tt:pum. (out (t+1)) = (¥ (t+1)) => address r(b (t+1)) | (a t)");;

let 3ux3Unit_spec = nev_definition
(‘mux3Unit_spec’,
“i1(ab ¢ out :num->ewordn) (w:num->num). mux3Unit_spec a b c out v »
ttipum. (out t) = (¥t =0) = at | (wt=1)=>bt|ct" )i

let splitUnit_spec = nev_definition
(‘splitUnit_spec’,
"y (r:“rep_ty) virt id ofs. splitUnit_spec r virt id ofs =
tt:pum. ((id t) = (segldshf r) (virt ¢)) /\
((ots t) = (seglfs xr) (virt t)) ");;

let latchUnit_spec = nev_definition
(‘latchUnit_spec’,
"1(i out :num->ewordn) (ctrl:num->bool) (r :“rep_ty).
latchUnit_spec r i out ctrl =
tt:num. out (t+1) = ctrl (t+1) => out t | (i (t+1))" );;

let reglnit_spec = new_definition
(‘reglnit_spec’,
%1(i out :num->swordn) 1d clr (r:“rep_ty). reglnit_specr i 1d clr out =
('t:num. out (t+1) = (clr t => (vordnr 0) J1dt =it | outt)) /\
(out 0 = (wordnr 0) )");;

let matchUnit_spec = new_definition
(‘matchUnit_spec‘,
nyi(a b:nun->saddress) (m:num->bool) (r:“rep_ty). matchUnit_specr a b m =
t(t:nun). m(t+1) = ( addrEqr (a t, b t) ) => T:bool | F");;

let oneUnit_spec = nev_definition
(‘oneUnit_spec’, "tt:num (r: rep_ty). onelnit_specr t = (vordn r) 1");;



let bitFalse = nev_definition
(‘bitFalse’, "!t:num. bitFalse t = F");;

let memoryUnit_spec = nev_definitien
(‘memorylnit_spec’,
"ireq addr data done mem (r:"rep_ty).
semoryUnit_spec T req addr data done mem =
( (data 0 = wordn r 0) /\ (done 0 = F) )} /\
t1t. ( (zeq t) = ( (data (t+1) = fetch r (men t, addr t) ) /\
(done (t+1) = T) ) |
( (data (t+1) = wordn r 0) /\
(done (t+1) = F) ) )");;

X
A valid request vill require 4 phases required with a delay of at least 1
time unit occurs betveen phases.

0: (initial) -wait until reqln-
add (shift vaddr), tblPtr into tmpReg
compare vaddr, tblPtrADDR (match)
1:
if supervisor mode
if match and write request =-> store dataln into tblPtr
else pass request thru (addr,data,rve) and ack
goto Phase 0
else
fetch men (tmpReg)
add tapReg, 1
2: -wait until fdone-
fetch men (tmpReg+l)
3: -wait until fdone-
if secUnit pass
add fetched value, vaddr
pass request thru (addr,data,rve) and ack
else
FAIL

let controlUnit_spec = nev_definition
(‘controlUnit_spec’, "!(muxC phase :num->pum) (rve: num->RVE)
(tapC tblC 1C xlat done ack rReq reqln super match secOk fdone:num->bool).
controlUnit_spec reqIn super rve match secOI fdone
auxC tapC tblC 1C rReq xlat done ack phase =
((muxC 0,tapC 0,tblC 0,1C 0,rReq 0,xlat 0,done O,ack 0, phase 0) =
(o , F ., F ,F ,F ., *» , F , F , 0 Y )
TA
(!t.(-uxC(t#l).tnpc(tOI).tblc(t+1).lc(t+1).chq(t#l).xlat(t+1).dono(t+1).
ack(t+1) ,phase(t+1) ) = L X ttl rxda P X
¥ Umba eloc B X
¥ X plt qtaonk 4 %
(phase t = 0) =>
(reqin t =

(phase t = 1) =>

(super t =
((wBIT (rve t)) /\ match t) => (o,
(o,
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(2, T,F, T, 1,T,F,F, 2)) |

((phase t = 2) /\ fdone t) => (1, F,F,F, T,T,F,F, 3) |
((phase t = 3) /\ fdone t) =>

(secDE t => (o, F,F,F, F,T,F,F, 4) |

- (o0, F,F,F, F,F,T,F, 0)) |

(phase t = 4) => (o0, F,F, T, F,T,T,T, 0) |

(phase t = 5) => (o0, F,F,F, F,F,T,T ,0) |

{muxC t,tmpC t,tblC t,1C t, F ,xlat t,done t,ack t,phase t)) " );;

let dataPath = nev_definition
(‘dataPath‘,
®1(r:“rep_ty) (vAddr rAddr :num->saddress)(vData :num->svordn) mem
(rve :num->RVE) mem (tb1Ptr :num->swordn) (tblPtrADDR :num->saddress)
(muxC :num->num) (tapC tblC 1C rReq xlat match secOKk fdone :mum->bool).
dataPath r viddr vData rve mea tblPtrADDR tblPtr riddr
suxC tapC tblC 1C rReq xlat match sec0OKk fdone =
T(muxl mux2? id ofs addOut data latOut :num->ewordn)
(secData:num->swordn).

(reginit_spec r vData tblC bitFalse tblPtr) A
(reglnit_spec r data tapC bitFalse secData) N
(secUnit_spec r vAddr secData rve secOK) N
(splitUnit_spec r vAddr id ofs) N\
(mux3Unit_spec id ofs (oneUnit_spec r) muxl mux(C) N
(sux3Unit_spec tblPtr data latQut mux2 muxC) \
(addUnit_spec r mux] mux2 addOut) N
(latchUnit_spec r addOut latOut 1C) AN
(matchUnit_spec r vAddr tblPtrADDR match) /\
(muxUnit_spec r vAddr latOut rAddr xlat) /\
(menoryUnit_spec r rReq riddr data fdone menm) ")

let mau_imp = nev_definition
(‘mmu_imp*,
*i(r:"rep_ty) (vAddr riddr :num->eaddress)(vData :num->swordn)
(rve :num->RWE) (superv reqIln xlat ack done :num->bocl) mem
(tblPtr :num->ewordn) (tblPtrADDR :num->saddress) (phase :num->num).
anu_izp r viddr vData rve superv tblPtr tblPtrADDR reqln
rAddr done ack xlat mem phase =
?(muxC :num->num) (tapC tblC 1C rReq match secOKk fdone :num->bool) .
(controlUnit_spec reqln superv rve match secOK fdone

muxC tapC tblC 1C rReq xlat done ack phase) N\
(dataPath 1 vAddr vData rve mes tblPtrADDR tblPtr riddr
muxC tapC tblC 1C rReq xlat match secOK fdone) ")is
close_theory();:
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mmu.aux.ml
let Library_Root = ¢ /epoch/d1/csgrad/schubert/hol/Library/‘i;
let 1ib_dir_list =
(map (concat Library_Root)
[‘gates/‘; ‘bits/*; ‘words/‘; ‘numbers/‘; ‘decimal/‘; ‘assoc/‘1):;
set_search_path (search_path() ¢ [‘.¢;
‘/opoch/di/csgnd/lchubon/hollnct1cs/' :
¢/epoch/d1/csgrad/schubert/hol/al/*;
¢ /cpoch/dl/cspad/nc.hubort/hol/thooriol/ 4
¢ /apoch/d1/csgrad/schubert/bhol/ lisp/vax/‘;
]
¢ 1lib_dir_list);;
loadf (‘aux_defs.ml‘);;
systen ‘mm /opoch/dl/csgnd/schubort/hol/thooriu/nu_uux.th‘ i
sew_theory ‘mmu_aux‘;;
Lmap load_parent [‘nu_lbl‘:‘tino_abn‘;‘llu_dc!‘;‘ctx‘lUnit-lu‘]::1
% ;‘oum_thms‘];; %

pev_type_abbrev (‘RVE', ":boolSbool#bool™);;

1
AUX FACTS

let PLUS_ORE_TACn =
REVRITE_TAC [(SYM_RULE ADD1); (num_CONV n) ; ADD_CLAUSES] ; ;

let T2 = prove_tha (‘T2‘, "it. (¢t + 1) + 1 =1+ 2", PLUS_ONE_TAC "2" );:
let T3 = prove_tha (‘T3‘, "!t. (¢ +2) +1=t+ 3", PLUS_DEE_TAC "3" );;
let T4 = prove_tha (‘T4‘, "!t. (t +3) + 1=t + 4", PLUS_ORE_TAC "4" );;
let T5 = prove_tha (‘TS‘, "!t. (t +4) + 1= ¢ + 5", PLUS_ONE_TAC "5" )i
let T6 = prove_tha (‘T6‘, "!t. (¢ +5) +1=t+ 6", PLUS_DNE_TAC "6" )i;
let T7 = prove_tha CT7C, "t (L +6) + 1=t ¢ 7», PLUS_DNE_TAC "7" )i
let LESS_ADD_SUC = prove_thm
(‘LESS_ADD_SUC‘,"!t n. t < ( t + SUC(n) ",
REWRITE_TAC [ADD_CLAUSES;LESS_THM]
THEN REPEAT GEN_TAC
THEN D1SJ_CASES_TAC (SPEC "a" LESS_0_CASES)
THENL
[ POP_ASSUM(\thm. REWRITE_TAC [(SYM_RULE ths);ADD_CLAUSES])
POP_ASSUM(\tha. ASSUME_TAC( REWRITE_RULE [tha)

(SPECL ["0";"n"] LESS_NOT_EQ) ))
THEN POP_ASSUM(\thm. REWRITE_TAC [ (REVRITE_RULE
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[(SYM_RULE thm)] (SPECL [“t";"n" JLESS_ADD_KONZERO ))}])
1)::

let RANGE_LEMNMA = TAC_PROOF
(03, "1t1 t2 (£:num->bool).
Qt’. t1 €t /\ ¢! < t2 = ~(f t*)) /\ ~(f t2)
o> (127, 82 < t* /\ ¢’ < (22+1) ==> “(f ¢t°))"),
REPEAT STRIP_TAC
THEN ASSUM_LIST (\asl. ASSUME_TAC( SPEC "t’:numn" (el 5 asl)))
THEN ASSUM_LIST (\asl. STRIP_ASSUME_TAC (
REVRITE_RULE [SYM_RULE ADD1; LESS_THM] (el 3 asl)))

THENL
[ ASSUM_LIST(\asl. ASSUME.TAC { REVRITE_RULE [(el 1 asl)] (el 3 asl)))

ALL_TAC
)
TEER RES_TAC

) HH

4
let LESS_SQUEEZE_LEWA =
let LESS_EQ_SUCC =
SYN_RULE (PURE_ONCE_REVRITE_RULE [DISJ_SYM] LESS_THM) in
PURE_ONCE_REVRITE_RULE [ADD1] (
PURE_ONCE_REWRITE_RULE [LESS_EQ_SUC] (
PURE_QNCE_REVRITE _RULE {LESS_OR_EQ] LESS_EQ_ANTISYM));;

1

let stable_sigs = mew_definition
(‘stable_sigs’,

"1t]1 t2 (rve :num->RVE) (vAddr tbl1PtrADDR:num->saddress)
(data:nun->¢yordn) (mem:num->ememory) (super:num->bool).
stable_sigs t1 t2 vAddr rve tblPtriADDR data mea super =
"L t1 <t At < t2 =

(super t’ = super t1) /\ (vAddr t’ = vAddr t1) /\
(rve t’ = rve t1) A (data t’ = data t1) /\
(men t’ = men t1) AN (tblPtrADDR t’ = tblPtrADDR t1)"

4
let INP_F_THX = prove_tha
CIP_F_TEN ' ,"!f. (£ ==> F) » (£ = F)",
GEN_TAC
THEN BOOL_CASES_TAC "t”
THEE REWRITE.TAC [0 );;

let BOT_TO_EQ_CONV =
(PURE_REVRITE_RULE [IMP_F_THM] o
(BETA_RULE o (ONCE_REWRITE_RULE [NOT_DEF] )));;

13

let LESS_ADD_EQ = prove_thm
(‘LESS_ADD_EQ°,
“1t xy. ((t+4x) < (t+y)) = (x < ",
IEDUCT_TAC

THEN REVRITE_TAC {ADD_CLAUSES]
THEN ONCE_REVRITE_TAC [CONJUNCT1(CONJUNCT2(CONJUNCT2(ADD_CLAUSES)))3



THER ASM_REVRITE_TAC [LESS_MONO_EQ] ):;

let BETV_0_7_1S_1 = prove_tha
(‘BETW_0_T_IS_1‘, "0 < 1 /A 1 < 7",
CONV_TAC (TOP_DEPTH_CONV nus_CONY)
THEN REVRITE_TAC[LESS_0;LESS_MONO_EQ]

let BETV_0_7_IS_2 = prove_tha
(‘BETY_O0_T_IS8_2¢, "0 <2 /\N2¢< 7",
CONV_TAC (TOP_DEPTE_CONY num_CONV)
THEN REVRITE_TAC[LESS_0;LESS_MONO_EQ]

let BETV_0_7_IS_4 = prove_tha
(‘BETV_0_7_IS_4‘, "0 < 4 /\ 4 ¢ T",
CONV_TAC (TOP_DEPTH_COFV num_COEV)
THEX REVRITE_TAC[LESS_O ;LESS_MONO_EQ]

let BETV_0_7_18_§ = prove_tha
('BETW_0_7_IS_5‘, "0 < 5 /\ 6 < 7",
CONV_TAC (TOP_DEPTH_CONV num_CONV)
THES REWRITE_TAC{LESS_O;LESS_MONO_EQ]

let BETVW_0_6_1S_1 = prove_tha
(‘BETV_0_6_1Ss_1‘, "0 < 1 /A1 6",
CONV_TAC (TOP_DEPTH_CONV num_CONY)
THEN REVRITE_TAC[LESS_O ;LESS_HD!D_BQ]

let BETV_0_6_1S_2 = prove_tha
(‘BETW_0_6_15_2‘, "0 < 2 /\ 2 < 6",
COKV_TAC (TOP_DEPTH_CONV num_COKY)
THEN REVRITE_TAC([LESS_0;LESS_MONO_EQ]

let BETV_0_6_1S_4 = prove_tha
(‘BETW_0_6_IS_4‘, "0 < 4 /\ 4 < 6",
CONV_TAC (TOP_DEPTH_CONV num_CONV)
TEEN REVRITE_TAC[LESS_0;LESS_MONO_EQ]

let BETV_0_6_1S_5 = prove_thn
('BETW_0_6_1S_5‘, "0 < § /\ § < 6",
COKV_TAC (TOP_DEPTH_CONV num_CORV)
THEN REVRITE_TAC[LESS_0;LESS_MOKO_EQ]

close_theory();;

VHH

Y

)it

)i

) EH]

Y
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ctrlUnit_lem.ml

let Library_Root = ‘/epoch/d1/csgrad/schubert/hol/Library/‘;;

let 1ib_dir_list =
(map (concat Library_Root)
[‘gates/‘; ‘bits/‘;‘words/‘;‘numbers/‘'; ‘decimal/‘; ‘assoc/‘]);;

set_search _path (search_path() ¢ [‘.*;
¢/epoch/d1/csgrad/schubert/hol/tactics/*;
¢/epoch/d1/csgrad/schubert/hol/ml/*;
‘/epoch/d1/cegrad/schubert/hol/theories/';
‘/epoch/d1/csgrad/schubert/hol/lisp/vax/";

]
¢ lib_dir_list);;

loadf(‘anx_defs.nl‘);;

systea ‘ra /epoch/di/csgrad/schubert/hol/theories/ctrilnit_lem.th';;

nev_theory ‘ctrlUnit_lem’;;

Lloadf ‘abstract‘;;%

sap load parent [‘mmu_abs‘;‘time_abs‘;‘mmu_def‘;‘arithmetic‘];;

%
AUX FACTS

let SUC_EQ_DEF = prove_tha
(‘SUC_EQ_DEF', "!an. (SUCm = SUCND) = (m=n)",
REPEAT GEN_TAC
THEN EQ_TAC
THENL
[REVRITE_TAC [I¥V_SUC]

STRIP_TAC
TEEN BOOL_CASES_TAC "= = n"
THEN ASM_REVRITE_TAC O

o0 bud

'Y

let num _EQ_TAC =
CONV_TAC (TOP_DEPTH_CONV num_CONV)
THER REWRITE_TAC [SUC_EQ_DEF]
THEN REWVRITE_TAC [BOT_SUC]
THEN CONV_TAC (ONCE_DEPTH_CONV SYM_CORV )
THES REWRITE_TAC [NOT_SUC);;

let PRASE_O_UNIQUE = prove_thm
(‘PRASE_O_UNIQUE®, "“(0 = 1) /\ ~(0 = 2) /\ “(0 = 3)/\"(0 = 4)/\"(0 = §)",
REPEAT CONJ_TAC THEN num_EQ_TAC );;

let PHASE_1_UNIQUE = prove_tha

C‘PBASE_1_UNIQUE®, ""(1 = 0) /A “(1 = 2) /A "(1 = 3)/\"(1 = £)/\"(1 = 5)",
REPEAT CONJ_TAC THEN num_EQ_TAC );:
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let PHASE_2_UNIQUE = prove_tha
(‘PHASE_2_UNIQUE‘, "~(2 = 0) /\ ~(2
REPEAT CONJ_TAC THEN num_EQ_TAC );;

let PEASE_3_UNIQUE = prove_tha
(‘PHASE_3_UNIQUE', ""(3 = 0) /\ (3
REPEAT CONJ_TAC THEN num_EQ_TAC );;

let PHASE_4_UNIQUE = prove_tha
(‘PHASE_4_UNIQUE', "~(4 = 0) /\ ~(4
REPEAT CONJ_TAC THEN num _EQ_TAC );;

let PHASE_5_UNIQUE = prove_ths
(‘PHASE_B_UNIQUE', "~(5 = 0) /\ ~(5
REPEAT CONJ_TAC THEN num_EQ_TAC );:

1) /\ (2= 3)/\"(2= 4)/\"(2 = B)",
1 /\"(3=2)/\"(3=4)/\"(3=5)",
1) /\ (4= 2)/\"(4=3)/\"(4=5)",
1) /\ “(6 = 2)/\"(6 = /\"(5 = H)",

b3
Control Unit Lemmas

let SIX_PHASES_ONLY = prove_thm
(*SIX_PHASES_ONLY‘,

“1 muxC phase rve tapC tblC 1C xlat done ack rReq reqIn super match

secOKk fdone.

controlUnit_spec regIln super rve match secDX fdone muxC tapC tblC 1C
rReq xlat done ack phase ==>
('t. (phase t = 0) \/ (phase t = 1) \/ (phase t = 2)
(phase t = 3) \/ (phase t = 4) \/ (phase t = 5))",

REPEAT GEN_TAC

THEM PURE_ONCE_REWRITE_TAC [ controlUnit_spec ]

THEN STRIP_TAC
TEEN IBDUCT_TAC
THERL

% base case

%

ASSUM_LIST(\asl. MAP_EVERY ASSUME_TAC( CONJUNCTS (
(REVRITE_RULE [PAIR_EQ] (el 2 asl) ) )))
THEN POP_ASSUM(\thm. REWRITE_TAC[thm] )

3 induction
PURE_REWVRITE_TAC [(ADD1]

TEEN POP_ASSUM(\thm. DISJ_CASES_TAC (the) )

THERL

&3 case 0
ASM_CASES_TAC "(reqln t):bool"

THEN POP_ASSUM_LIST(\asl. REWRITE_TAC ( CORJURCTS (
REVRITE_RULE ([(el 1 asl);(el 2 asl)] @ (PAIR_EQ])
(SPEC_ALL (el 3 asl)) )))

POP_ASSUM(\tha. DISJ_CASES_TAC (thm) )

THERL
% case 1
ASM_CASES_TAC " (super t):bool"

THEN ASM_CASES_TAC "(wBIT(rve t) /\ match t):bool”

THEN POP_ASSUM_LIST(\asl. REVRITE_TAC ( CONJUNCTS ¢
REVRITE_RULE ([(el 1 asl);(el 2 asl);(el 3 asl);PAIR_EQ] ¢
(CONJUNCTS (PHASE_1_UNIQUE))) (SPEC_ALL (el 4 asl)))))

POP_ASSUM(\thm. DISJ_CASES_TAC (tham) )
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THENL

% case 2 %

ASM_CASES_TAC "(fdone t):bool"

THEB POP_ASSUM_LIST(\asl. REWRITE_TAC ( CONJUNCTS (
REVRITE_RULE ((CONJUNCTS (PHASE_2_UNIQUE)) @ [PAIR_EQ])
(REVRITE_RULE [(el 1 asl); (el 2 asl)]

(SPEC_ALL (el 3 asl))) )))

POP_ASSUM(\tha. DISJ_CASES_TAC (thm) )
THENL

% case 3 ]

ASK_CASES_TAC "(fdone t):bool"

THEN ASM_CASES_TAC "(secOK t):bool"

THES POP_ASSUM_LIST(\asl. REWRITE_TAC ( CONJUNCTS (
REVRITE_RULE ((CONJUNCTS (PHASE_3_UNIQUE)) ¢ [PAIR_EQ])
(REVRITE_RULE [(el 1 asl);(el 2 asl);(el 3 asl) ]

(SPEC_ALL (el 4 asl)) ))))

3% case 4,5

POP_ASSUM(\tha. DISJ_CASES_TAC (thm) )

THEN POP_ASSUM_LIST(\asl. REVRITE_TAC( COBJUNCTS (
REWVRITE_RULE ((CONJUNCTS (PHASE_4_UNIQUE)) ¢

(COEJUNCTS (PHASE_S5_UNIQUE)) ¢ [PAIR_EQ])
(REVRITE_RULE [(al 1 asl)] (SPEC_ALL (el 2 asl))) )))
1M

%
SIX_PHASES_ONLY =
}- tmuxC phase rve tmpC tblC 1C xlat done ack rReq reqln super match
secOKk fdone.
controlUnit_spec
reqln
super
TVve
match
secOK
fdone
auxC
tepC
tblC
1c
TReq
xlat
done
ack
phase =a=>
(1t
(phase ¢t
(phase t = 1) \/
(phase t = 2) \/
(phase t = 3) \/
(phase t = 4) \/
(phase t = §))
Run time: 1235.6s
Intermediate theorems generated: 73322

0) \/

(Holly : Run time: 2728.2s)
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let NOT_PHASE_2_THEX_O = prove_thm
(*NOT_PHASE_2_THEN_0‘,
"1 muxC phase rve tapC tblC 1C xlat done ack rReq regln super match
secOX fdone.
controlUnit_spec reqIn super rve match secOX fdone muxC tapC tblC 1C
rReq xlat done ack phase ==>
('t. (phase t = 2) ==> “(phase (t+1) = on,
REPEAT GEN_TAC
THEN PURE_ONCE_REVRITE_TAC [ controlUnit_spec ]
THEN STRIP_TAC
THEN STRIP_TAC
THEN STRIP_TAC
THEN POP_ASSUM_LIST(\asl. ASSUME_TAC(
REVRITE_RULE [(el 1 asl);PHASE_2_URIQUE] (SPEC_ALL (el 2 asl))))
THEN ASM_CASES_TAC "(fdone t):bool"
THEN POP_ASSUM_LIST(\asl. MAP_EVERY ASSUME_TAC( CONJURCTS (
REVRITE_RULE [(el 1 asl);PAIR_EQ] (el 2 asl) )))
THEN STRIP_TAC
THEN POP_ASSUM_LIST(\asl. REVRITE_TAC [ (REVRITE_RULE
((CONJUNCTS PHASE_O_UNIQUE) ¢ [(el 1 asl)]) (el 2 asl))1) )i

%
NOT_PHASE_2_THEN_O =
|- !muxC phase rve tapC tblC 1C xlat done ack rReq reqln super match

secOK fdone.

controlUnit_spec

reqln

super

rve

match

secOK

fdone

auxC

tapC

tblC

1C

rReg

xlat

done

ack

phase ==>

(1t. (phase t = 2) ==> “(phase(t + 1) = o))
Run time: 69.5s
Intermediate theorems generated: 6905

(Holly: Run time: 233.6e)

let PHASE_O_IDLE = prove_thm
(‘PHASE_O_IDLE‘,
"} muxC phase rve tmpC tblC 1C xlat done ack rReq reqIn super match
secDK fdone.
controlUnit_spec reqln super rve match secOK fdone muxC tmpC tblC 1C
rReq xlat done ack phase ==>
(1t. (phase t = 0) => ( (tblC ¢t = F) /\ (muxC t = 0)) )",
REPEAT GEN_TAC
THEN STRIP_TAC
THER IEDUCT_TAC
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THENL
(% base case %
POP_ASSUM(\tha. MAP_EVERY ASSUME_TAC( CONJUNCTS (
REWRITE_RULE [controllnit_spec] tha )))
THEY POP_ASSUM_LIST(\asl. REWRITE_TAC( CONJUNCTS (
REVRITE_RULE [PAIR_EQ] (el 2 asl))))
;% induction case ¥
REVRITE_TAC [ADD1)
THEN ASSUM_LIST(\asl. ASSUME_TAC( SPEC_ALL(
REVRITE_RULE ([(el 2 asl)] (SPEC_ALL SIX_PHASES_OELY))))
TREN ASSUM_LIST(\asl. MAP_EVERY ASSUME_TAC( CONJUNCTS (
SPEC_ALL (REVRITE_RULE [controlUnit_spec] (el 3 asl)))) )
THES POP_ASSUM_LIST(\asl. MAP_EVERY ASSUME_TAC(rev(subtract asl
[Cel 2 as1); (el 4 asl); (el 5 asl}])))
THEN ASSUM_LIST(\asl. DISJ_CASES_TAC (el 2 asl) )
THENL
€ phase 0
ASM_CASES_TAC "(reqln t):bool"®
THEN POP_ASSUM_LIST(\asl. REWRITE_TAC( CONJUNCTS (
REWVRITE_RULE ([PAIR_EQ;(el 1 asl);(el 2 asl)]e
(CONJURCTS PHASE_O_UNIQUE)) (SPEC_ALL (el 3 asl)) )))
sPOP_ASSUM(\thm. DISJ_CASES_TAC (thm) )
THENL
{{-o=-w=ewe-—— phase 1 =~-e=e=c=- —%
ASK_CASES_TAC "(super t):bool"
THEE ASM_CASES_TAC "((wBIT(rve t) /\ match t)):bool"
THEN POP_ASSUM_LIST(\asl. REWRITE_TAC(
(CONJUNCTS PHASE_5_UNIQUE) @ (CORJUNCTS (
REVRITE_RULE ([PAIR_EQ;(el 1 asl);(el 2 asl); (el 3 asl)] @
(CONJUNCTS PHASE_1_UNIQUE)) (SPEC_ALL (el 4 asl)) ))))
sPOP_ASSUM(\ths. DISJ_CASES_TAC (thm) )
THENL

[{-~-e====e—wse- phase 2 ===e-==mc--={

ASM_CASES_TAC "(fdone t):bool"

THEN POP_ASSUM_LIST(\asl. REWRITE_TAC( (CONJUNCTS PHASE_2_UNIQUE)®¢
(CONJUKCTS PHASE_3_UBIQUE) @ (CONJUNCTS ( REVRITE_RULE
([PAIR_EQ; (el 1 asl); (el 2 asl))]@¢(CONJUNCTS PHASE_2_UNIQUE))
(SPEC_ALL (el 3 asl)) ))))

:POP_ASSUM(\tha. DISJ_CASES_TAC (thm))

THENL

%

ASM_CASES_TAC "(fdone t):bool"
THEN ASK_CASES_TAC "(secDK t):bool”
THEN POP_ASSUM_LIST(\asl. REWRITE_TAC(
(COEJUNCTS PHASE_3_UNIQUE) @ (CONJUNCTS ( REWRITE_RULE
([PAIR_EQ; (el 1 asl); (el 2 asl);(el 3 asl)le
(CONJUNCTS PHASE_3_UNIQUE)) (SPEC_ALL (el 4 asl)) ))))
;{-~==ec=——===——= phase 4,5 ------vw——-- %
POP_ASSUM(\thm. DISJ_CASES_TAC (thm) )
THEN POP_ASSUM_LIST(\asl. REWRITE_TAC(
(CONJUNCTS PHASE_S_UNIQUE) @ (COBJUNCTS PHASE_4_UNIQUE) ¢
(CONJUNCTS ( REWRITE_RULE
([PAIR_EQ; (el 1 asl)]@(CONJUNCTS PHASE_4_UNIQUE)Q
(CONJUNCTS PHASE_S_UKIQUE)) (SPEC_ALL (el 2 asl)) ))))

1313115

X
PBASE_O0_IDLE =
|- 'muxC phase rwe tapC tblC 1C xlat done ack rReq reqla seper satch
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secOK fdone.

controlUnit_spec

reqln

super

Tve

match

secOK

1done

auxC

tnpC

tb1C

1C

rheq

xlat

done

ack

phase ==>

(!t. (phase t = 0) ==> (tb1C t = F) /\ (muxC t = 0))
Run time: 721.0s
Intermediate theorems generated: 66258

let CTRL_UNIT_EXPAND = prove_tha
(*CTRL_UNIT_EXPAND',
ncontrollUnit_spec reqln super rve match secOK fdone muxC
tapC tblC 1C rReq xlat done ack phase ==>
it.
muxC(t + 1),tmpC(t + 1),tdIC(t + 1),1C(t + 1),rReq(t + 1),
zlat(t + 1),done(t + 1),ack(t + 1),phase(t + 1) =
((phase t = 0) =>
(reqIn t => (o,F,F,F,F,F,F,F, 1) | (o,F,F,F,F,F,F,F,00) |
((phase t = 1) =>
(super t =>
((wBIT(rwe t) /\ match t) =>
(o,F,T,F,F,F,F,F,5) |
(0,F,F,F,F,F,T,T,00) |
(2,T,F,7.T,T.F,F,2)) |
(((phase t = 2) /\ fdone t) =>
(1,F,F,F,1,T,F,F,3) |
(((phase t = 3) /\ fdone t) =>
(secOX t => (0,F,F,F,F,T,F,F,4) | (0,F,F,F,F,F,T,F,0)) |
((phase t = 4) =>
(o0,F,F,T,F,T,T,T,00 |
((phase t = 5) =>
(o,F,F,F,F,F,T,T,0) |
(muxC t,tmpC t,tblC t,2C t, F ,xlat t,done t,ack t,
phase t)))))))",
STRIP_TAC
THEN POP_ASSUM( \thm. ACCEPT_TAC (
(CONJUNCT2( (REVRITE_RULE [controlUnit_spec] tha)))) ));;

%
CTRL_UNIT_EXPAND =
|- controllnit_spec

reqln

super

TVve

match

secOK
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fdone
muxC
tapC
tblc
ic
rheq
xlat
done
ack
phase ==>
(1e.
mxC(t + 1),tnpC(t + 1),tb1C(t + 1),1C(t + 1),rReq(t + 1),
xlat(t ¢+ 1),done(t + 1),ack(t + 1), ,phase(t + 1) =
((phase t = 0) =
(reqIn t => (O,F,F,F F,FF,F,1) | (0, F,F,FFF,FFO0)I
((phase t = 1) =>
(super t =>
((wBIT(xrve t) /\ match t) =>
(o,F,T,F,F,F,F,F,5) |
(0,F,F,F,F,F,1,T,0)) |
(2,1,r,7,7,7T.F,F.2)) |
(((phase t = 2) /\ fdone t) =>
(1,P,F,F,T,T,F,F,3) |
(((pbase t = 3) /\ fdone t) =>
(secOX t => (0,F,F,F,F,T,F,F,4) | (O,F,F,F,F,F,T,F,0)) |
((phase t = 4) =>
(o,F,F,F,F,T,T,7,0) |
((phase t = §) =>
(o,F,F,F,F,F,T,T,0) |
(muxC t,tapC t,tblC t,1C t, F ,xlat t,done t,ack t,phase t))))))))
Run time: 33.7s
Intermediate theoreas generated: 2782

close_theory();;
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mmu_prf.ml
let Library_Root = ‘Iopoch/dl/c'grad/schubort/hol/Librnry/';;
let lib_dir_list =
(map (concat Library_Root)
[‘gates/; ‘bits/'; ‘words/‘; ‘numbers/‘; ‘decimal/‘; ‘assoc/'1);::
set_search_path (search_path() ¢ [‘.*;
‘/opoch/dl/csgrad/schubort/hol/tacticu/‘:
¢ fepoch/d1/csgrad/schubert/hol/ml/‘;
‘/opoch/dl/csgrld/lchub.rt/hol/thoorioo/':
‘/cpoch/dl/csgrad/nchubcrt/hol/lisp/vnx/‘:
]
@ 1ib_dir_list);;
loadf (‘aux_defs.ml');;
systes ‘ra /cpoch/dl/cagrad/ochubort/hol/thooricl/lnu_prf.th‘;;
nev_theory ‘mmu_pri‘;:
loadf ‘abstract’;;
loadf ‘exist.tac.ml‘;;

map load_parent [‘llu_lbl‘;‘ti-e_lbs‘:‘llu_def‘:‘ctrlUnit-lcl‘:‘llu.nnx‘):;

let rep_ty = abstract_type ‘amu_abs‘ ‘segld’;;

X
AUX FACTS AND DEFS

let line tok t =
if (is_eq 1)
then (let x = fst(dest_var(rator(lhs(t))))
in (mem x (vords tok) ? false))
else ( if (is_neg t)
then (let y =fst(dest_var(rator(dest_neg(t))))
in mem y (words tok))
else (let y = fst(dest_var(rator(t)))
in mem y (words tok)) )
? false;;

letrec lines tok t =

if (is_conj t)

then (let x = (dest_conj t)

in (let b = (line tok (fst x))
in (if b then true
else (1lines tok (snd x)) )))
else (line tok t)
7 false;;

letrec unit tok t =
it (is_combd t)
then (let x = fst(dest_comb t) in unit tok x)
else ((let x = fst(dest_const t) in mem x (words tok)) 7 false) ;;
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let FIND_ASSUM £ asl = hd(filter(f o concl) asl);;

let FIND_SPEC_UNIT s n u’ asl =
(SPEC s (REWRITE_RULE [u)
(FIND_ASSUM (unit u’) asl) ));;

let FIND_ASSUM2 £ asl = hd(t1(filter(f o concl) asl));;

let FIRD_SPEC_URIT2 s u u’ asl =
(SPEC s (REWRITE_RULE [u)
(FIED_ASSUM2 (unit u’) asl) ));;

let FIND_SPEC_MEM UNIT s asl =
(SPEC s (CORJUNCT2 (REWRITE_RULE [memoryUnit_spec]
(FIED_ASSUM (unit ‘memoryUnit_spec‘) asl) )));;

let FILTER_ASSUM_TAC thnl £ =
ASSUM_LIST(\asl. ASSUME_TAC( REVRITE_RULE thal
(FIND_ASSUM £ asl) ));;

let UNIT u asl = (FIND_ASSUM (unit u) asl);;

let LINE 1 asl = (FIED_ASSUM (lines 1) asl);;

let LESS_ CONV X =
REVRITE_RULE [LESS_MCEO_EQ;LESS_0](
REVRITE_RULE (ADD;ADD_SYM] ((TOP_DEPTH_CONV nus_CONY) x));;

let RANGE_LEMMA = TAC_PROOF
«(fJ, "tt1 12 (f:num->bool).
(it’. t1 <t /\ ¢! € t2 ==> “(2 ¢7)) /\ ~(f t2)
=3 (187, t1 €t /\ ¢ < (t2+41) ==> “(£ ¢t’))"),
REPEAT STRIP_TAC
THER ASSUM_LIST (\asl. ASSUME_TAC( SPEC "t’:num" (el 5 asl)))
THES ASSUM_LIST (\asl. STRIP_ASSUME_TAC (
REVRITE_RULE [SYM_RULE ADDi; LESS_THM] (el 3 asl)))
THENL
[ ASSUR_LIST(\asl. ASSUME_TAC ( REWRITE_RULE [(el 1 asl)] (el 3 asl)))

ALL_TAC
]
THEN RES_TAC
)

let RANGE_ TAC hi lo =
CONJ_TAC
THENL
[REVRITE_TAC [(num_CONV hi );(SPECL ["t";lo] LESS_ADD_SUC))
REPEAT
(PURE_ONCE_REVRITE_TAC [(SYM_RULE T2); (SYM_RULE T3); (SYM_RULE T4);
(SYM_RULE T5); (SYM_RULE Té); (SYM_RULE T7))
THEN MATCH_MP_TAC RANGE_LEMMA
THEN CONJ_TAC

THEEL
[REVRITE_TAC [(SYM_RULE ADD1);LESS_LESS_SUC]

ASM_REWRITE_TAC O
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)
)i

let LESS_ADD_EQ1 =
L ty.t<(tey)=0<y" %
(GE‘ ntn
(REVRITE_RULE[LESS_0; (CONJURNCT1( COBJUNCT2( ADD_CLAUSES)))]
(SPECL ["t";"0"] LESS_ADD_EQ))
)i

let RARGE_RULE th =
(REVRITE_RULE [LESS_MOEO_EQ;LESS_ADD_EQ; LESS_ADD_EQ1;LESS_0]
¢ CONV_RULE (TOP_DEPTH_CONV num_CONV) th ) )i;

let EXPAND_TBLPTR_RULE s T asl =
(REVRITE_RULE [(LINE ‘tbl1C‘ asl);(LINE tb1Ptr’ asl);T]
(SPEC s (CONJUNCT1{ (REWRITE_RULE
[regUnit_spec;bitFalse]
(FIND_ASSUM2 (unit ‘regUnit_spec’) asl)) ))) );:

let INST_SIG_LIST t asl =
( ONCE_REVRITE_RULE [ADD1]
(REVRITE_RULE [LESS_SUC_REFL; SYM_RULE ADD1;
LESS_ADD_EQ; LESS_ADD_EQ1]
(FIND_SPEC_UNIT t stable_sigs ‘stable_sigs‘ asl) ));;

let NOT_FOR_TBLPTR_TAC =
EXISTS_TAC "2"
THEN PURE_ONCE_REWRITE_TAC [Next]
THEN ASSUM_LIST(\asl. REWRITE_TAC [(LINE ‘phase‘ asl);
(LINE ‘done‘ ael);(LINE ‘ack‘ asl);(LINE ‘tblPtr’ asl)) )
THEN ¥ determine riddr(t+2) %
ASSUM_LIST(\asl. ASSUME_TAC (
(REVRITE_RULE [(LINE ‘muxC'’ asl);T2;(LINE ‘xlat‘ asl))
(FIND_SPEC_UNIT "t+1" muxUnit_spec ‘muxUnit_spec’ asl) )))
THEN CONJ_TAC % create range and mmu_spec subgoals %
THENL ¥ range subgoal
{RANGE_TAC "2" "1V
H % amu_spec part %
ONCE_REWRITE_TAC [mmu_spec;stable_sigs]
TEEN STRIP_TAC
THER % instantiate stable_sige X
POP_ASSUM(\thm. MAP_EVERY ASSUME_TAC ( CONJUECTS (
SYM_RULE( ONCE_REWRITE_RULE [ADD1]
(REWRITE_RULE [LESS_SUC_REFL; SYM_RULE ADD1; SYM_RULE T2]
(SPEC "t+i" thm))))))
THEN FILTER_ASM_REWRITE_TAC(lines ‘super‘)[]
THEY PURE_ONCE_REWRITE_TAC (superMode]
THEN ALL_TAC
3is

let UBPAIR.TAC1 =
PDP-ASSUH_UST(\MI.ILP-EMY ASSUME_TAC ( (
(rev(subtract asl[(el 1 asl)])) @
[(REVRITE_RULE [PAIR_EQ] (el 1 asl))) )N

let CONTROL_LINE.TAC t lea T =
ASSUM_LIST(\asl. ASSUME_TAC(
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BREVRITE_RULE ( CONJUNCTS lem €
[(LINE ‘fdone‘ asl);T;(LINE ‘phase’ asl)])
(SPEC ¢t (MATCB_MP CTRL_UNIT_EXPARD
(UNIT ‘controlUnit_spec’ asl) )) ));;

lJet RADDR.TACt T =
ASSUM_LIST(\asl. ASSUME_TAC(
(REVRITE_RULE [(el 1 asl);T;(LINE ‘xlat‘ asl))
(FIND_SPEC_UNIT t muxUnit_spec ‘muxUnit_spec‘ asl) )));;

X
ABSTRACT MMU PROOF

let MMU_PROOF = prove_thm

(‘¥MU_PROOF*,

*i(r:"rep_ty) (viddr ridddr :num->saddress)(vData :num->evordn)
(rve :num->RVE) (super reqln zlat ack done :num->bool) meam
(tblPtr :num->swordn) (tblPtriDDR :num->saddress) (phase :num->num).

sau_inp r vAddr vData rve super tblPtr tblPtrADDR reqln

rAddr done ack xlat mea phase ==>
tt. (phase t = 0) ==>
(reqln t) =>(7c. Next done (t,t+c) /\ ( phase (t+c) = 0 ) /\
((stable_sigs t (t+c) viddr rve tblPtrADDR vData
Eem super) m=>
(umu_spec r (viddr t) (rve t) (tblPtrADDR t) (tblPtr t)
(vData t) (mem t) (super t) =
(ack(t+c), rAddr(t+c), tblPtr(t+c)) )))
1 ( (ack (t+1) = F) /\
(phase (t+1) = 0) /\
(tblPtr(t+1) = tblPtr(t) ) )",
REPEAT GER_TAC
THEN PURE_REWRITE_TAC (mmu_imp;dataPath]
THEN REPEAT STRIP_TAC
THEE ASSUM_LIST(\asl. ASSUME_TAC{ REWRITE_RULE [(el 1 asl)] (
SPEC_ALL ( REWRITE_RULE [(UNIT ‘controllnit_spec‘ asl)]
(SPEC_ALL PHASE_O0_IDLE)))))
THEN ASSUM_LIST(\asl. ASSUME_TAC( REVRITE_RULE
(COBJUNCTS PHASE_O_UNIQUE @ [(LINE ‘phase‘ asl)])
(SPEC "t" (MATCH_MP CTRL_UNIT_EXPAND
(UKIT ‘controlUnit_spec’ asl) )) ))
THEN ASM_CASES_TAC "(reqln t):bool"
THEN ASSUM_LIST(\asl. REWRITE_TAC [(el 1 asl)]) )
THEN ASSUM_LIST(\asl. ASSUME_TAC(
(REWRITE_RULE [(el 1 asl)](el 2 asl) ) ))
THEN POP_ASSUM_LIST(\asl.MAP_EVERY
ASSUME_TAC(rev(subtract asl(el 3 asl)])))
THEN
ASSUM_LIST(\asl. ASSUME_TAC( COBJUNCT1( (REVRITE_RULE
[regUnit_spec;bitFalse] (FIND_ASSUM2 (unit ‘regUnit_spec’) asl)) )))
THEN ASSUM_LIST(\asl. ASSUME_TAC
(REVRITE_RULE [(LINE ‘tblC‘ asl)]
(SPEC "t" (el 1 asl)) ) )
TEEX % unpair contrcl lines at (t+1) %
ASSUM_LIST(\asl. ASSUME_TAC(
(REVRITE_RULE [PAIR_EQ](el 3 asl)) ))
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THER POP-ASSUH_LIST(\BI.MP_EV‘ERY
ASSUME_TAC(rev(subtract asl[(el 4 as1)1)))
% gt rid of “reqln case 1
THEXNL
[ ALL_TAC; ASM_REVRITE_TACO )
THEN % determine tblPtr (t+2)X%
ASSUM_LIST(\asl. ASSUME_TAC(
(EXPAND_TBLPTR_RULE "t+1" T2 asl)))
THER
ASSUM_LIST(\asl. ASSUME_TAC( (REWRITE_RULE
(CONJUKCTS PREASE_1_UNIQUE ¢ [T2;(LIKE ‘phase’ asl)])
(SPEC "t+1" (MATCH_MP CTRL_UNIT_EXPAND
(UNIT ‘controlUnit_spec’ asl) )) )))

% -—= case analysis —===—=--—=Y%
THEN ASM_CASES_TAC "(super(t ¢ 1)) :bool"
TEENL [
ASM_CASES_TAC "(wBIT (rve(t + 1))):bool”
THENL [
ASM_CASES_TAC "(addrEq (r:"rep._ty) (vAddr t,tblPtrADDR t)):bool"
THENL [
g--- (1.1.1) ==----- super, wBIT, addrEq %

Y determine control_lines(t+2) %
ASSUM_LIST(\asl. ASSUME_TAC( (REWRITE_RULE
(PAIR_EQ; (LINE ‘super‘ asl); (el 2 asl);
(REVRITE_RULE [(el 1 asl)]
(FIND_SPEC_UNIT "t" matchUnit_spec ‘matchUnit_spec’ asl) )
] (el 4 asl) )))
THEE Y determine tblPtr(t+3) %
ASSUM_LIST(\asl. ASSUME_TAC(
(EXPAED_TBLPTR_RULE "t+2" T3 asl)))
THEN ¥ determine control lines(t+3) %
ASSUM_LIST(\asl. ASSUME_TAC( (REWRITE_RULE
(CONJUNCTS PHASE_S_UNIQUE ¢ {(LIKE ‘phase’ asl);T3;PAIR_EQ))
(SPEC "t+2" (MATCH_MP CTRL_UNIT_EXPAND
(UNIT ‘controllnit_spec’ asl) )) )))
THEN EXISTS_TAC "3"
THEN PURE_DNCE_REWRITE_TAC [Next]
THEEN ASK_REWRITE_TAC O
THEN CONJ_TAC ¥ create range and mmu_spec subgoals %
THENL
[ RABGE_TAC "3" "2"

ONCE_REVRITE_TAC [mmu_spec]
THEN STRIP_TAC
THEN % expand stable_sigs for (t+1) and (t+2) %
ASSUM_LIST(\asl. MAP_EVERY ASSUME_TAC ( CORJUECTS (
SYM_RULE( ONCE_REWRITE_RULE [ADD1]
((CONV_RULE LESS_CORV)
(REWRITE_RULE
[LESS-ADD-EQ;LFSS_SUC_REFL; SYM_RULE ADD1; SYM_RULE T2]
(SPEC "t+1" (REWRITE_RULE [stable_sigs]l (el 1 asl))) )) ) )))
THEN ASSUM_LIST(\asl. ASSUME_TAC
(PURE_ONCE_REVRITE_RULE
[(SYM_RULE ((TOP_DEPTH_CONV nus_CONV) "2"))]
(RANGE_RULE
(SPEC "t+2" (REVRITE_RULE {stable_sigs] (el 7 asl))) ) ) )
THES
PILTER_ASM_REVRITE_TAC (1ines ‘super‘)D
THEN PURE_ONCE_REWRITE_TAC [superMode]
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THEN ASSUM_LIST(\asl. REWRITE_TAC [ PAIR_EQ;
(el 13 asl);(el 5 asl); % wBIT %(el 12 asl) % addrEq X1)
THEN % show vAddr t = rAddr(t+3) %
RADDR_TAC "t+2" T3
THEN ASSUM_LIST(\asl. REWRITE_TAC[(el 1 asl);(el 2 asl)] )
]

- (1.1.2) super, wBIT, “addrEq %
ASSUN_LIST(\asl. ASSUME_TAC( REWRITE_RULE [(el 1 asl)]
(FIBD_SPEC_UKIT "t" matchUnit_spec ‘satchUnit_spec' asl) ))
THEN ASSUM_LIST(\asl. MAP_EVERY ASSUME_TAC( CONJUNCTS(
REVRITE_RULE {PAIR_EQ; (el 1 asl);(el 3 asl);(el 4 asl)] (el 5 asl) )))
TEEN BOT_FOR_TBLPTR_TAC
THER ASSUM_LIST(\asl. REWRITE_TAC [PAIR_EQ;
(REVRITE_RULE [SYM_RULE (LIEE ‘viAddr‘ asl)] (LINE ‘raddr‘ asl) );
(el 18 asl) X addrEq X1

1;
- (1.2) - super, "wBIT ? 3
ASSUM_LIST(\asl. MAP_EVERY ASSUME_TAC( CONJUNCTS(
REVRITE_RULE [PAIR_EQ; (el 1 asl);(el 2 asl)] (el 3 asl) )))

THEN BOT_FOR_TBLPTR_TAC

THEN ASSUM_LIST(\asl. REVRITE_TAC [PAIR_EQ;
(REVRITE_RULE [SYM_RULE (LINE ‘vAddr‘ asl)] (LINE ‘rAddr‘ asl) );
(REWRITE_RULE [SYM_RULE (LINE ‘rve‘ asl)] (el 17 asl) )

LeBITZ 1)

]
: ALL_TAC
] % end super cases %
= “super %
THEN % determine addOut(t+1) %
ASSUM_LIST(\asl. ASSUME_TAC(
REWRITE_RULE {(el 8 asl);
(REWRITE_RULE [
(FIND_SPEC_UNIT "t" splitUnit_spec ‘splitUnit_spec‘ asl))
(FIND_SPEC_UNIT2 "t" mux3Unit_spec ‘mux3Unit_spec’ asl) )}

(REVRITE_RULE [LINE ‘muxC‘ asl)
(FIND_SPEC_UNIT "t" sux3Unit_spec ‘mux3Unit_spec’ asl) )
)|
(FIND_SPEC_UNIT "t" addUnit_spec ‘addUnit_spec‘ asl) ))
TBEE Y determine latDut(t+1) %
ASSUM_LIST(\asl. ASSUME_TAC(
(REVRITE_RULE [(el 1 asl);{(LIEE ‘1C‘ asl)]
(FIND_SPEC_UNIT "t" latchUnit_spec ‘latchUnit_spec' asl) )))
THEN ¥ determine fdone value at (t+2) ¥
ASSUM_LIST(\asl. ASSUME_TAC( CONJUNCT2
(REVRITE_RULE [T2; (LINE ‘rReq‘ asl)]
(FIND_SPEC_MEM_UNIT "t+1" asl)) ))
THEN X unpair control lines at (1+2) %
POP_ASSUM_LIST(\asl.MAP_EVERY ASSUME_TAC ( (
(rev(subtract asl((el § asl)])) ¢
[C(REVRITE_RULE [PAIR_EQ; (LINE ‘super‘ asl)] (el § asl))] )))
THEE % determine latOut(t+2) %
ASSUM_LIST(\asl. ASSUME_TAC(
(REVRITE_RULE [(el 1 asl);(LINE ‘latOut‘ asl);T2)
(FIND_SPEC_UNIT "t+1" latchUnit_spec ‘latchUnit_spec’ asl))))
THEE ¥ determine riddr(t+2) %
RADDR_TAC "t+1" T2
% determine control lines at (t+3) %
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THER
CONTROL_LINE_TAC "t+2" PHASE_2_UNIQUE T3
THEE % determine latOut(t+3) %
ASSUM_LIST(\asl. ASSUME_TAC(
(REVRITE_RULE [(LIFE ‘latOut‘ asl);T3;
(REVRITE_RULE [PAIR_EQ] (el 1 asl))]
(FIND_SPEC_UNIT "t+2" latchUnit_spec ‘latchUnit_spec’ asl))))
THES % determine memory value at (t+3) %
ASSUN_LIST(\asl. ASSUME_TAC(
(REVRITE_RULE [(LINE ‘rReq’ asl) ;T3]
(FIND_SPEC_MEM_UNIT "t+42" asl)) ))
THER ¥ determine tblPtr (t+3)%
ASSUM_LIST(\asl. ASSUME_TAC(
(EXPAND_TBLPTR_RULE “"t+2" T3 asl)))
THEN % unpair control lines at (t+3) %
UNPAIR_TAC 4
4 determine control lines at (t+4) X
THER
CONTROL_LINE_TAC "t+3" PHASE_2_UNIQUE T4
THEN % determine addOut(t+4) %
ASSUM_LIST(\asl. ASSUME_TAC(
REVRITE_RULE [PHASE_2_URIQUE;T4; oneUnit_spec;
(LINE ‘latOut’ asl);
(REWRITE_RULE [(LINE ‘muxC‘ asl);
(FIND_SPEC_UNIT “t+3" splitUnit_spec ‘splitUnit_spec’ asl)]
(FIND_SPEC_UNIT2 "t+3" mux3Unit_spec ‘mux3Unit_spec’ asl) );
(REWRITE_RULE [(LINE ‘muxC’ asl)]
(FIBD_SPEC_UNIT "t+3" mux3Unit_spec ‘mux3Unit_spec’ asl) )
]
(FIND_SPEC_UKIT "t+3" addUnit_spec ‘addUnit_spec’ asl) ))
THEN ¥ determine secData reg value(t+4) X%
ASSUM_LIST (\asl. ASSUME_TAC( REVRITE_RULE
[T4:bitFalse;(LINE ‘tmpC‘ asl);(LINE ‘data‘ asl)]
(SPEC "t+3" (CONJUNCT1( (REVRITE_RULE [regUnit_spec]
(FIND_ASSUM (unit ‘regUnit_spec’) asl) MMM
THEN % determine memory value at (t+4) X%
ASSUM_LIST(\asl. ASSUME_TAC(
(REVRITE_RULE [(LINE ‘rReq‘ asl);T4]
(FIND_SPEC_MEM_UNIT "t+3" asl))))
THEE Y determine tblPtr (t+4)%
ASSUM_LIST(\asl. ASSUME _TAC(
(EXPAND_TBLPTR_RULE "t+3" T4 asl)))
THEN % unpair control lines at (t+4) %
UNPAIR_TAC 6
THEN ¥ determine latOut(t+4) %
ASSUM_LIST(\asl. ASSUME_TAC( (REWRITE_RULE
[Cel 1 asl);(LINE ‘latOut‘ asl);(LINE ‘add0ut‘ asl);T4)
(FIRD_SPEC_UNIT "¢+3" latchUnit_spec ‘latchUnit_spec’ asl))))
TEEN % determine rAddr(t+4) X
RADDR_TAC “t+3" T4
THES % determine securityUnit data(t+5) %
ASSUM_LIST(\asl. ASSUME_TAC(
(REWRITE_RULE [(LINE ‘secData’ asl);T6]
(FIND_SPEC_UNIT "t+4" secUnit_spec ‘secUnit_spec’ asl) )))
4 determine control lines at (t+5) 3
THER
CONTROL_LINE_TAC "t+4" PHASE_3_UNIQUE TS
TEEN ¥ determine memory value at (t+5) X
ASSUM_LIST(\asl. ASSUME_TAC(
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(REVRITE_RULE [(LIBE ‘rReq‘ asl);T5)
(FIND_SPEC_MEM_UNIT “"t+4" asl))))
THEY % determine tblPtr (t+5)%
ASSUM_LIST(\asl. ASSUME_TAC(
CEXPAND_TBLPTR_RULE "t+4" TS asl)))
THEF % unpair control lines at (t+5) %
URPAIR_TAC 3
THEE X determine addOut(t+6) ¥
ASSUM_LIST(\asl. ASSUME_TAC(
REVRITE_RULE (PEASE_1_UNIQUE;T6;
(REVRITE_RULE [(LINE ‘muxC‘ asl);(LINE ‘data‘' asl);(LINE ‘rAddr‘ asl);
(FIND_SPEC_URIT “t+5" splitUnit_spec ‘splitUnit_spec’ asl)]
(FIND_SPEC_UNIT2 "t+5" mux3Unit_spec ‘sux3Unit_spec‘ asl) )

*
(REVRITE_RULE [LINE ‘muxC‘ asl)
(FIND_SPEC_UNIT "t+5" mux3Unit_spec ‘mux3Unit_spec’ asl) )
b |
(PIND_SPEC_UNIT "t+5" addUnit_spec ‘addUnit_spec’ asl) ))
THEN X determine tblPtr (t+6)%
ASSUN_LIST(\asl. ASSUME_TAC(
(EXPAND_TBLPTR_RULE "t+5" T6 asl)))
THER ¥ cases on validAccess ¥
ASM_CASES_TAC "validiccess (r:“rep_ty)
(vdddr(t + 4) ,fetch r(mea(t + 2),vAddr(t + 2)),rve(t + 4))
FAN
(ofslEQ r(vAddr(t + 4),fetch r(mea(t + 2),raddr(t + 2))))"
THENL
[
ASSUM_LIST(\asl. ASSUME_TAC(
(REVRITE_RULE [(el 1 asl)] (LINE ‘secOK‘ asl)) ))
% determine contrcl lines at (t+6) %
THER
ASSUM_LIST(\asl. ASSUME_TAC(
REWVRITE_RULE (CONJUNCTS PHASE_3_UNIQUE ¢
[(LINE ‘fdone‘ asl);T6;(LINE ‘phase‘ asl);PAIR_EQ; (el 1 asl)])
(SPEC "t+5" (MATCH_MP CTRL_UNIT_EXPAKD
(UNIT ‘controlUnit_spec’ asl) )) ))
THEE % determine latOut(t+€) %
ASSUM_LIST(\asl. ASSUME_TAC( (REWRITE_RULE
[C(el 1 asl);(LINE ‘latOut’ asl);(LINE ‘addDut‘ asl);Té]
(FIED_SPEC_UNIT "t+5" latchUnit_spec ‘latchUnit_spec‘ asl))))
THEN ¥ determine riddr(t+6) %
RADDR_TAC "t+5" T6
THEN ¥ determine tblPtr (t+7)%
ASSUM_LIST(\asl. ASSUME_TAC(
(EXPAND_TBLPTR_RULE "t+6" T7 asl)))
% determine control lines at (t47) %
THEN
CONTROL_LINE_TAC "t+6" PHASE_4_UNIQUE T7
THEN POP_ASSUM(\tha. ASSUME_TAC( REWRITE_RULE [PAIR_EQ] thm ))
THEN ¥ determine latOut(t+7) %
ASSUM_LIST(\asl. ASSUME_TAC( (REVRITE_RULE
[Cel 1 asl);(LINE ‘latOut‘ asl);(LINE ‘addOut‘ asl);T7)
(FIND_SPEC_UNIT "t+6" latchUnit_spec ‘latchlnit_spec' asl))))
THEN ¥ determine raddr(t+7) %
RADDR_TAC “t+6" T7
2 X
THEN EXISTS_TAC "7"
THEN PURE_ONCE_REWVRITE_TAC [Next]



THEN ASSUM_LIST(\asl. REVRITE.TAC[(LINE ‘done’ asl); (LIEE ‘phase’ asl)])
THEN CONJ_TAC % create range and mmu_spec subgoals %
THENL
[ RANGE_TAC "7" "6"
[
STRIP_TAC
THEN ¥ srite raddr for time t %
ASSUM_LIST(\asl. ASSUME_TAC( (REVRITE_RULE
[(el 15 asl); (el 17 asl);
(REVRITE_RULE [BETW_0_7_IS_5] (INST_SIG_LIST "t+5" asl) );
(REVRITE_RULE [BETV_0_7_IS_4) (INST_SIG_LIST "t+4" asl) )]
(LINE ‘rAddr‘ asl) )))
THEN
PURE_ONCE_REWRITE_TAC (mau_spec]
THEN ASSUM_LIST(\asl. REWRITE_TAC { (REVRITE_RULE
[(REWRITE_RULE (BETW_0_7_18_1] (INST_SIG_LIST nt+1" asl) )]
(LINE ‘super’ asl) )])
THEN PURE_REWRITE_TAC [userMode;legaliccess)
THEN EXPAND_LET_TAC
THEN Y% srite validAccess for time t %
ASSUM_LIST(\asl. ASSUME_TAC ( (REVRITE_RULE
[(REWRITE_RULE [BETW_0_7_15_2] (INST_SIG_LIST "t+2" asl) );
(REWRITE_RULE [BETW.0_7_15_4) (INST_SIG_LIST "t+4" asl) );
(el 29 asl)]
(el 11 asl) ) ))
TEEX
ASSUM_LIST(\asl. REWRITE_TAC [(el 1 asl);(el 2 asl);
(LINE “tblPtr‘ asl);PAIR_EQ] )
THEN PURE_ONCE_REWRITE_TAC [vToR]
THEN EXPAND_LET_TAC
THER REVRITE_TAC [
]
: % Case where “(validiccess ... /\ ofslEq ... ) %
ASSUM_LIST(\asl. ASSUME_TAC(
(REVRITE_RULE [(el 1 asl)] (LINE ‘secOK‘ asl)) ))
Y determine control lines at (t+6) %
THEN
ASSUM_LIST(\asl. ASSUME _TAC(
REVRITE_RULE (CORJUNCTS PHASE_3_UNIQUE @
[(LINE ‘4done‘ asl);T6;(LINE ‘phase’ asl);PAIR_EQ; (el 1 2as1)])
(SPEC "t+5" (MATCH_MP CTRL_UNIT_EXPAND
(UNIT ‘controlUnit_spec‘ asl) )) ))
THEN % determine latDut(t+6) %
ASSUM_LIST(\asl. ASSUME_TAC( (REWRITE_RULE
[Cel 1 asl);(LINE ‘latQut‘ asl);(LINE ‘addOut’ asl);Té]
(FIND_SPEC_UNIT "t+5" latchUnit_spec ‘latchUnit_spec’ asl))))
THEN ¥ determine rAddr(t+6) %
RADDR_TAC “t+5" T6
THEN EXISTS_TAC "6"
THEN PURE_ONCE_REVRITE_TAC [Next]
THEN ASSUM_LIST(\asl. REWRITE_TAC[(LINE ‘done‘ asl);(LINE ‘phase’ asl)])
THEF CONJ_TAC % create range and mau_spec subgoals %
THENL
[RABGE_TAC "6" "§"

’
STRIP_TAC
THEN ¥ write riddr for time t %
ASSUM_LIST(\asl. ASSUME_TAC( (REVRITE_RULE
[ (REWVRITE_RULE (BETW_0_6_15_5] (INST_SIG_LIST "t+5" asl) )]



(LINE ‘rAddr® asl) )))
THER
PURE_ONCE_REWRITE_TAC (mmu_spec)
THEN ASSUM_LIST(\asl. REWRITE_TAC [ (REWRITE_RULE
[(REVRITE_RULE [BETW_0_6_IS_1] (INST_SIG_LIST "t+1" asl) )]
(LIBE ‘super’ asl) )])
THEE PURE_REVRITE_TAC [userMode;legaliccess]
THEN EXPAND_LET_TAC
THER 2 write validiccess for time t %
ASSUM_LIST(\asl. ASSUME_TAC ( (REWRITE_RULE
[(REWRITE_RULE (BETW_0_6_1S_2] (INST_SIG_LIST "t+2" asl) );
(REWRITE_RULE [BETW_0_6_IS_4] (INST_SIG_LIST "t+4" asl) );
(el 25 asl))
(el 7 asl) ) ))
THER
ASSUM_LIST(\asl. REWRITE_TAC [(el 1 asl);(el 2 asl);
(LINE ‘tblPtr‘ asl);PAIR_EQ] )
THEN REWRITE_TAC [0
]
] 2 end validiccess cases ¥

&
MIU_PROOF =
|- !r vAddr riddr vData rve super reqln xlat ack done mem tblPtr
tbhlPtrADDR phase.
sau_inp
T
viddr
vData
rve
super
tblPtr
tblPtrADDR
reqin
riddr
doae
ack
xlat
mea
phase ==>
(it
(phase t = 0) ==>

Next done(t,t + ¢) /\
(phase(t + ¢) = 0) /\
(stable_sigs t(t + c)vAddr rve tblPtrADDR vData mem super ==>
(mau_spec
T
(vAddr t)
(ree t)
(tb1PtrADDR t)
(tblPtr t)
(vData t)
(nen t)
(super t} =
ack(t + c),riddr(t + c),tblPtr(t + ¢)))) |



(Cack(t + 1) = F) /\

“(phase(t + 1) = 0) /\

(tblPtr(t + 1) = tblPtr t))))
Run time: 2419.4s
Intermediate theorems generated: 121858

File sau_prf loaded

() : void

Run time: 2635.2s

Internediate theorems generated: 122537

87






Form Approved
OMB No. 0704-0188

Ja
lam
A
=3
-
.
O
0
=
(AR
_—
—-‘
po
=
O
-
©
pe]
A
m

5 hour e respanse mcluding the time for revewing instructions, searching existing data sources,
oL olecton Dt intarmaton Send (omments regaring this burden estimate or any other aspect of this
NAsRINGINN HeadaLartacs Serv.ies, [irectorate far intiemation Operations and Reports, 1215 Jefferson

g

TN T B T s ‘, Ta -j;,:».,- Chee st tlanagement ang Budye!, Paper aork Reduction Project (0704-0188), Washington, DC 20503
1. AGERNCY USE OMLY Lweave blznk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1992 Lontractor R

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

P e e .

i Formal Verification of a Set of Marory Management Units C NAS1-18586

WJ 505-64-10-07

6. AUTHOR(S)
E. Thomas Schubert
K. Levitt
Gerald C. Cohen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

. eq - . REPORT NUMBER

Boeing Military Airplanes
P.0. Box 3707, M/S 7J-24
Seattle, WA 98124-2207

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

NASA Langley Research Center
Hampton, VA 23665-5225 NASA CR-189566

11, SUPPLENMENTARY NOTES
Langley Technical Monitor: Sally C. Johnson
Task 3 Report
123. DISTRIBUTICN ' AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited
Subject Category 60

. A3STRALT Maximum 200 words)

This docurent was generated in support of NASA contract NAS1-18586, Design and Validation of Digital
Flignt Control Systems Suitable for Fly-By-Wire Application, Task Assigmment 3.

with formal verification of embedded systems. In particular, this document describes the verification
of a set of memory management units, The verification effort demonstrates the use of hierarchical
decomposition and abstract theories. The MMJs can be organized into a camplexity hierarchy. Each
new level in the hierarchy adds a few significant features or modifications to the lower Tevel MMJ.
The units described include: (1) a page check TLM (translation look-aside module); (2) a page check
TLM with supervisor Tine; (3) a base a bounds MMJ; (4) a virtual address translation M; and

(5) a virtual address translation MMJ with memory resident segment table.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Verification, Validation, HOL, MU, TLM, Virtual Address Y
16. PRICE CODE
A5
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified
NSN 7540-01-280-5500 tandard Form 298 (Rev 2-89)

Prescriped by ANSI Std 239-18
2Y8.102







